cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A386050 Primes having only {0, 2, 5, 9} as digits.

Original entry on oeis.org

2, 5, 29, 59, 229, 509, 599, 929, 2029, 2099, 2909, 2999, 5009, 5059, 5099, 5209, 9029, 9059, 9209, 9929, 20029, 20509, 20599, 20929, 20959, 22229, 22259, 25229, 25999, 29009, 29059, 29209, 29599, 29959, 50599, 50909, 50929, 52009, 52259, 52529, 52999, 55009
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A261268, A385769, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 5, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 2, 5, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 2, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0259"), 41))) # uses function/imports in A385776
    

A386098 Primes having only {1, 2, 5, 9} as digits.

Original entry on oeis.org

2, 5, 11, 19, 29, 59, 151, 191, 199, 211, 229, 251, 521, 599, 911, 919, 929, 991, 1129, 1151, 1229, 1259, 1291, 1511, 1559, 1951, 1999, 2111, 2129, 2221, 2251, 2521, 2551, 2591, 2999, 5119, 5519, 5521, 5591, 9151, 9199, 9221, 9511, 9521, 9551, 9929, 11119, 11159
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A385773, A385776, A385781, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1259"), 41))) # uses function/imports in A385776
    

A386146 Primes having only {2, 3, 5, 9} as digits.

Original entry on oeis.org

2, 3, 5, 23, 29, 53, 59, 223, 229, 233, 239, 293, 353, 359, 523, 593, 599, 929, 953, 2239, 2293, 2333, 2339, 2393, 2399, 2539, 2593, 2939, 2953, 2999, 3229, 3253, 3259, 3299, 3323, 3329, 3359, 3529, 3533, 3539, 3559, 3593, 3923, 3929, 5233, 5323, 5333, 5393, 5399
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A214703, A260128, A260227, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2359"), 41))) # uses function/imports in A385776
    

A386154 Primes having only {2, 4, 5, 9} as digits.

Original entry on oeis.org

2, 5, 29, 59, 229, 449, 499, 599, 929, 2459, 2549, 2999, 4229, 4259, 4549, 4999, 5449, 9929, 9949, 22229, 22259, 22549, 24229, 24499, 25229, 25999, 29429, 29599, 29959, 42299, 42499, 42929, 44249, 44449, 44549, 44959, 45259, 45599, 45949, 45959, 49429, 49459
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385785, A385786, A385793.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 4, 5, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 4, 5, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 4, 5, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2459"), 41))) # uses function/imports in A385776
    

A386161 Primes having only {2, 5, 6, 9} as digits.

Original entry on oeis.org

2, 5, 29, 59, 229, 269, 569, 599, 659, 929, 2269, 2659, 2699, 2969, 2999, 5569, 5659, 5669, 6229, 6269, 6299, 6529, 6569, 6599, 6659, 6959, 9629, 9929, 22229, 22259, 22669, 22699, 25229, 25969, 25999, 26669, 26699, 26959, 29269, 29569, 29599, 29629, 29669, 29959
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385786, A385788, A385797.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 6, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 6, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 6, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2569"), 41))) # uses function/imports in A385776
    

A386163 Primes having only {2, 5, 7, 9} as digits.

Original entry on oeis.org

2, 5, 7, 29, 59, 79, 97, 227, 229, 257, 277, 557, 577, 599, 727, 757, 797, 929, 977, 997, 2297, 2557, 2579, 2729, 2777, 2797, 2927, 2957, 2999, 5227, 5279, 5297, 5527, 5557, 5779, 5927, 7229, 7297, 7529, 7559, 7577, 7727, 7757, 7759, 7927, 9227, 9257, 9277, 9929
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A260831, A261182, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2579"), 41))) # uses function/imports in A385776
    

A386164 Primes having only {2, 5, 8, 9} as digits.

Original entry on oeis.org

2, 5, 29, 59, 89, 229, 599, 829, 859, 929, 2999, 8599, 8929, 8999, 9829, 9859, 9929, 22229, 22259, 22859, 25229, 25589, 25889, 25999, 28229, 28289, 28559, 28859, 29599, 29959, 29989, 52259, 52289, 52529, 52859, 52889, 52999, 55229, 55259, 55529, 55589, 55829
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385786, A385790, A385798.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2589"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.