cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385803 Decimal expansion of the surface area of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 5, 3, 4, 9, 0, 1, 0, 2, 4, 8, 1, 1, 8, 6, 2, 4, 6, 1, 4, 0, 8, 7, 3, 5, 6, 2, 7, 6, 5, 0, 7, 7, 6, 9, 1, 1, 4, 3, 0, 7, 5, 4, 8, 3, 4, 6, 2, 7, 9, 3, 4, 8, 6, 2, 2, 1, 0, 4, 6, 4, 5, 1, 8, 8, 6, 8, 5, 2, 2, 4, 6, 4, 3, 6, 1, 6, 6, 2, 4, 0, 6, 0, 2, 7, 2, 7, 7, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the surface area of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			21.5349010248118624614087356276507769114307548346...
		

Crossrefs

Cf. A385802 (volume).

Programs

  • Mathematica
    First[RealDigits[5/2*(Sqrt[3] + Sqrt[25 + 10*Sqrt[5]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "SurfaceArea"], 10, 100]]

Formula

Equals (5/2)*(sqrt(3) + sqrt(5*(5 + 2*sqrt(5)))) = (5/2)*(A002194 + sqrt(5*(5 + A010476))).
Equals the largest root of x^8 - 700*x^6 + 121250*x^4 - 5421875*x^2 + 390625.