cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385802 Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 2, 6, 6, 1, 2, 4, 6, 2, 5, 4, 1, 6, 2, 8, 1, 1, 1, 0, 0, 8, 3, 4, 8, 5, 0, 5, 9, 3, 4, 0, 6, 7, 3, 0, 9, 8, 3, 0, 7, 8, 0, 0, 3, 2, 5, 9, 5, 4, 4, 6, 3, 8, 2, 7, 8, 2, 9, 9, 7, 8, 2, 8, 3, 2, 5, 2, 6, 2, 1, 6, 9, 7, 0, 0, 2, 6, 4, 2, 3, 1, 5, 5, 9, 3, 0, 9, 3, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the volume of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			8.266124625416281110083485059340673098307800325954...
		

Crossrefs

Cf. A385803 (surface area).

Programs

  • Mathematica
    First[RealDigits[(25 + 11*Sqrt[5])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "Volume"], 10, 100]]

Formula

Equals (25 + 11*sqrt(5))/6 = (25 + 11*A002163)/6.
Equals A102769 + 2*A179552.
Equals the largest root of 9*x^2 - 75*x + 5.

A385805 Decimal expansion of the surface area of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 9, 7, 9, 4, 8, 7, 1, 3, 3, 6, 8, 3, 9, 9, 2, 1, 5, 5, 5, 5, 9, 0, 3, 1, 5, 7, 7, 1, 4, 4, 5, 0, 7, 7, 7, 0, 7, 0, 1, 8, 8, 7, 2, 3, 1, 8, 8, 0, 7, 1, 2, 3, 1, 8, 0, 7, 3, 1, 2, 8, 5, 3, 6, 1, 5, 9, 5, 6, 9, 7, 4, 3, 2, 8, 8, 6, 9, 6, 2, 2, 1, 0, 4, 6, 2, 6, 9, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			21.97948713368399215555903157714450777070188723...
		

Crossrefs

Cf. A385804 (volume).

Programs

  • Mathematica
    First[RealDigits[3/4*(5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "SurfaceArea"], 10, 100]]

Formula

Equals (3/4)*(5*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5)))) = (3/4)*(5*A002194 + 3*sqrt(5*(5 + A010476))).
Equals the largest root of 256*x^8 - 172800*x^6 + 26244000*x^4 - 1230187500*x^2 + 8303765625.

A385696 Decimal expansion of the surface area of an augmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 0, 9, 0, 3, 1, 4, 9, 1, 5, 9, 3, 9, 7, 3, 2, 7, 6, 7, 2, 5, 8, 4, 3, 9, 6, 7, 8, 1, 5, 7, 0, 4, 6, 0, 5, 2, 1, 5, 9, 6, 2, 2, 4, 3, 7, 3, 7, 5, 1, 5, 7, 4, 0, 6, 3, 4, 7, 8, 0, 0, 5, 0, 1, 5, 7, 7, 4, 7, 5, 1, 8, 5, 4, 3, 4, 6, 2, 8, 5, 9, 1, 0, 0, 8, 2, 8, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			21.090314915939732767258439678157046052159622437375...
		

Crossrefs

Cf. A385695 (volume).

Programs

  • Mathematica
    First[RealDigits[(5*Sqrt[3] + 11*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "SurfaceArea"], 10, 100]]

Formula

Equals (5*sqrt(3) + 11*sqrt(5*(5 + 2*sqrt(5))))/4 = (5*A002194 + 11*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 198400*x^6 + 41204000*x^4 - 1620087500*x^2 + 7460640625.

A386543 Decimal expansion of the surface area of a parabiaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 3, 3, 7, 3, 4, 2, 4, 2, 8, 7, 3, 2, 5, 8, 4, 8, 6, 1, 1, 2, 3, 1, 1, 3, 5, 9, 1, 6, 9, 9, 4, 0, 0, 7, 5, 5, 1, 0, 5, 3, 3, 4, 1, 3, 3, 2, 0, 4, 3, 0, 6, 2, 0, 4, 4, 8, 1, 1, 6, 4, 8, 0, 1, 9, 3, 0, 8, 8, 1, 7, 8, 2, 3, 6, 1, 1, 2, 0, 5, 7, 0, 2, 1, 3, 8, 3, 2, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The parabiaugmented truncated dodecahedron is Johnson solid J_69.
Also the surface area of a metabiaugmented truncated dodecahedron (Johnson solid J_70) with unit edges.

Examples

			103.37342428732584861123113591699400755105334133204...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 15*Sqrt[3] + 50*Sqrt[#] + Sqrt[5*#])/2 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J69", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 15*sqrt(3) + 50*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/2 = (20 + 15*A002194 + 50*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/2.
Equals the largest root of x^8 - 80*x^7 - 11400*x^6 + 796000*x^5 + 31475250*x^4 - 1804610000*x^3 - 8296459375*x^2 + 548931187500*x - 2544044046875.
Showing 1-4 of 4 results.