cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385803 Decimal expansion of the surface area of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 5, 3, 4, 9, 0, 1, 0, 2, 4, 8, 1, 1, 8, 6, 2, 4, 6, 1, 4, 0, 8, 7, 3, 5, 6, 2, 7, 6, 5, 0, 7, 7, 6, 9, 1, 1, 4, 3, 0, 7, 5, 4, 8, 3, 4, 6, 2, 7, 9, 3, 4, 8, 6, 2, 2, 1, 0, 4, 6, 4, 5, 1, 8, 8, 6, 8, 5, 2, 2, 4, 6, 4, 3, 6, 1, 6, 6, 2, 4, 0, 6, 0, 2, 7, 2, 7, 7, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the surface area of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			21.5349010248118624614087356276507769114307548346...
		

Crossrefs

Cf. A385802 (volume).

Programs

  • Mathematica
    First[RealDigits[5/2*(Sqrt[3] + Sqrt[25 + 10*Sqrt[5]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "SurfaceArea"], 10, 100]]

Formula

Equals (5/2)*(sqrt(3) + sqrt(5*(5 + 2*sqrt(5)))) = (5/2)*(A002194 + sqrt(5*(5 + A010476))).
Equals the largest root of x^8 - 700*x^6 + 121250*x^4 - 5421875*x^2 + 390625.

A385804 Decimal expansion of the volume of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 5, 6, 7, 6, 2, 7, 4, 5, 7, 8, 1, 2, 1, 0, 5, 6, 8, 0, 7, 6, 7, 2, 0, 0, 6, 2, 8, 8, 7, 1, 1, 4, 2, 9, 4, 1, 4, 5, 1, 1, 5, 9, 4, 2, 4, 2, 7, 1, 6, 1, 0, 7, 3, 3, 0, 0, 7, 9, 3, 2, 3, 3, 5, 1, 4, 4, 7, 2, 6, 7, 3, 5, 5, 7, 0, 8, 8, 4, 1, 8, 6, 4, 0, 2, 0, 2, 7, 0, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			8.56762745781210568076720062887114294145115942427...
		

Crossrefs

Cf. A385805 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/8*(7 + Sqrt[45]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "Volume"], 10, 100]]

Formula

Equals (5/8)*(7 + 3*sqrt(5)) = (5/8)*(7 + A010499).
Equals A102769 + 3*A179552.
Equals the largest root of 16*x^2 - 140*x + 25.
Equals A377697^2. - Hugo Pfoertner, Jul 13 2025

A385696 Decimal expansion of the surface area of an augmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 0, 9, 0, 3, 1, 4, 9, 1, 5, 9, 3, 9, 7, 3, 2, 7, 6, 7, 2, 5, 8, 4, 3, 9, 6, 7, 8, 1, 5, 7, 0, 4, 6, 0, 5, 2, 1, 5, 9, 6, 2, 2, 4, 3, 7, 3, 7, 5, 1, 5, 7, 4, 0, 6, 3, 4, 7, 8, 0, 0, 5, 0, 1, 5, 7, 7, 4, 7, 5, 1, 8, 5, 4, 3, 4, 6, 2, 8, 5, 9, 1, 0, 0, 8, 2, 8, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 08 2025

Keywords

Comments

The augmented dodecahedron is Johnson solid J_58.

Examples

			21.090314915939732767258439678157046052159622437375...
		

Crossrefs

Cf. A385695 (volume).

Programs

  • Mathematica
    First[RealDigits[(5*Sqrt[3] + 11*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J58", "SurfaceArea"], 10, 100]]

Formula

Equals (5*sqrt(3) + 11*sqrt(5*(5 + 2*sqrt(5))))/4 = (5*A002194 + 11*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 198400*x^6 + 41204000*x^4 - 1620087500*x^2 + 7460640625.

A386545 Decimal expansion of the surface area of a triaugmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 4, 5, 6, 4, 7, 5, 6, 3, 5, 4, 4, 3, 7, 7, 7, 8, 6, 4, 4, 4, 7, 3, 7, 2, 9, 3, 8, 1, 1, 7, 2, 6, 8, 3, 0, 4, 9, 1, 2, 2, 4, 6, 6, 7, 1, 0, 4, 7, 1, 7, 5, 5, 0, 9, 1, 4, 9, 0, 6, 1, 0, 8, 2, 4, 7, 1, 0, 4, 4, 4, 8, 6, 5, 7, 1, 8, 4, 4, 4, 6, 8, 3, 6, 8, 5, 7, 1, 1
Offset: 3

Views

Author

Paolo Xausa, Jul 28 2025

Keywords

Comments

The triaugmented truncated dodecahedron is Johnson solid J_71.

Examples

			104.56475635443777864447372938117268304912246671047...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(60 + 35*Sqrt[3] + 90*Sqrt[#] + 3*Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J71", "SurfaceArea"], 10, 100]]

Formula

Equals (60 + 35*sqrt(3) + 90*sqrt(5 + 2*sqrt(5)) + 3*sqrt(5*(5 + 2*sqrt(5))))/4 = (60 + 35*A002194 + 90*sqrt(5 + A010476) + 3*sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 30720*x^7 - 1574400*x^6 + 238464000*x^5 + 68364000*x^4 - 390828240000*x^3 + 4437895162500*x^2 + 78660973125000*x - 1021409416546875.
Showing 1-4 of 4 results.