A385862 Number of n X m yesnograms that can be solved uniquely, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 52, 52, 16, 1, 1, 32, 210, 368, 210, 32, 1, 1, 64, 816, 2992, 2992, 816, 64, 1, 1, 128, 3206, 23058, 49578, 23058, 3206, 128, 1, 1, 256, 12536, 179576, 775204, 775204, 179576, 12536, 256, 1, 1, 512, 48962, 1388978, 12129616, 24177516, 12129616, 1388978, 48962, 512, 1
Offset: 0
Examples
For the 3 X 4 grid shown below, the row clues (counting runs of 0s) and the column clues (counting runs of 1s) are sufficient to reconstruct the grid, so this is one of the 2992 solvable grids counted in A(3, 4). | 1 3 1 2 ----+-------- 1 | 0 1 1 1 1 1 | 0 1 0 1 2 | 1 1 0 0 Top left corner of the array: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 4, 8, 16, 32, 64, ... 1, 4, 14, 52, 210, 816, 3206, ... 1, 8, 52, 368, 2992, 23058, 179576, ... 1, 16, 210, 2992, 49578, 775204, 12129616, ... 1, 32, 816, 23058, 775204, 24177516, 754845831, ...
Links
- Bertram Felgenhauer, Antidiagonals n+m = 0..13, flattened
- Bertram Felgenhauer, Counting Nonograms.
- Wikipedia, Nonogram.
Crossrefs
Formula
A(0,n) = 1, and A(1,n) = 2^n. A(n,m) = A(m,n), because a grid is solvable iff its complement-transpose is solvable.
Comments