A385895 Table read by rows: T(n, k) = T(n, k-1) + m * T(n-1, n-k) for k > 1, T(n, 1) = T(n-1, n-1), and T(n, 0) = 0^n, for m = 2.
1, 0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 3, 9, 11, 11, 0, 11, 33, 51, 57, 57, 0, 57, 171, 273, 339, 361, 361, 0, 361, 1083, 1761, 2307, 2649, 2763, 2763, 0, 2763, 8289, 13587, 18201, 21723, 23889, 24611, 24611, 0, 24611, 73833, 121611, 165057, 201459, 228633, 245211, 250737, 250737
Offset: 0
Examples
Triangle begins: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 1, 3, 3; [4] 0, 3, 9, 11, 11; [5] 0, 11, 33, 51, 57, 57; [6] 0, 57, 171, 273, 339, 361, 361; [7] 0, 361, 1083, 1761, 2307, 2649, 2763, 2763; [8] 0, 2763, 8289, 13587, 18201, 21723, 23889, 24611, 24611;
Programs
-
Maple
T := proc(n, k) option remember; ifelse(k = 0, 0^n, ifelse(k = 1, T(n-1, n-1), T(n, k-1) + 2*T(n-1, n-k))) end: seq(seq(T(n, k), k = 0..n), n = 0..9);
-
Mathematica
T[n_, k_] := T[n, k] = Which[ k == 0, Boole[n == 0], k == 1, T[n - 1, n - 1], True, T[n, k - 1] + 2*T[n - 1, n - k] ]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
-
Python
from functools import cache @cache def seidel(n: int, m: int) -> list[int]: if n == 0: return [1] rowA = seidel(n - 1, m) row = [0] + rowA row[1] = row[n] for k in range(2, n + 1): row[k] = row[k - 1] + m * rowA[n - k] return row def A385895row(n: int) -> list[int]: return seidel(n, 2) for n in range(9): print(A385895row(n))
Comments