cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385897 a(n) = 1 - 5*(n + 1)^2 + 5*(n + 1)^4.

Original entry on oeis.org

1, 61, 361, 1201, 3001, 6301, 11761, 20161, 32401, 49501, 72601, 102961, 141961, 191101, 252001, 326401, 416161, 523261, 649801, 798001, 970201, 1168861, 1396561, 1656001, 1950001, 2281501, 2653561, 3069361, 3532201, 4045501, 4612801, 5237761, 5924161, 6675901
Offset: 0

Views

Author

Peter Luschny, Jul 21 2025

Keywords

Crossrefs

Programs

  • Maple
    gf := (-x^4 + 4*x^3 - 66*x^2 - 56*x - 1)/(x - 1)^5:
    ser := series(gf, x, 35): seq(coeff(ser, x, n), n = 0..33);
  • Mathematica
    a[n_] := With[{h = (n + 1)^2}, 5 (h^2 - h) + 1]; Table[a[n], {n, 0, 33}]

Formula

a(n) = [x^n] (-x^4 + 4*x^3 - 66*x^2 - 56*x - 1)/(x - 1)^5.
a(n) = 5! * [x^5] (1 - sin(n*x))^(-1/n) for n > 0.
a(n) = A385896(n + 5, 5).
A000290(n) = (a(n) - 2*a(n-1) + a(n-2)) / 60.
A008512(n) = (a(n) + 2*a(n-1) + a(n-2)) / 2.
A022521(n) = (a(n-1) + a(n)) / 2.
A061317(n) = (a(n) - a(n-2)) / 20.
A063497(n) = a(n) - a(n-1).
gcd(a(n), a(n+1)) = 1.

A385898 a(n) = 16*n^5 + 70*n^4 + 105*n^3 + 65*n^2 + 15*n + 1.

Original entry on oeis.org

1, 272, 2763, 13024, 42125, 108576, 240247, 476288, 869049, 1486000, 2411651, 3749472, 5623813, 8181824, 11595375, 16062976, 21811697, 29099088, 38215099, 49484000, 63266301, 79960672, 100005863, 123882624, 152115625, 185275376, 223980147, 268897888, 320748149
Offset: 0

Views

Author

Peter Luschny, Jul 21 2025

Keywords

Crossrefs

Cf. A385896 (column 6).

Programs

  • Maple
    gf := (x^4 + 506*x^3 + 1146*x^2 + 266*x + 1)/(x - 1)^6:
    ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..28);
  • Mathematica
    a[n_]:=16n^5+70n^4+105n^3+65n^2+15n+1;Array[a,29,0] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1, 272, 2763, 13024, 42125, 108576},29] (* or *) CoefficientList[Series[ (x^4 + 506*x^3 + 1146*x^2 + 266*x + 1)/(x - 1)^6,{x,0,28}],x] (* James C. McMahon, Jul 24 2025 *)

Formula

a(n) = [x^n] (x^4 + 506*x^3 + 1146*x^2 + 266*x + 1)/(x - 1)^6.
a(n) = 6! * [x^6] (1 - sin(n*x))^(-1/n) for n > 0.
a(n) = A385896(n + 6, 6).
gcd(a(n), a(n+1)) = 1.
Showing 1-2 of 2 results.