cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385896 Array read by ascending antidiagonals: A(n, k) = k! * [x^k] (1 - sin(n*x))^(-1/n) for n > 0, A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 16, 1, 1, 1, 5, 19, 57, 61, 1, 1, 1, 6, 29, 136, 361, 272, 1, 1, 1, 7, 41, 265, 1201, 2763, 1385, 1, 1, 1, 8, 55, 456, 3001, 13024, 24611, 7936, 1, 1, 1, 9, 71, 721, 6301, 42125, 165619, 250737, 50521, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2025

Keywords

Examples

			Table starts:
  [0] 1, 1, 1,  1,    1,     1,      1, ... [A000012]
  [1] 1, 1, 2,  5,   16,    61,    272, ... [A000111]
  [2] 1, 1, 3, 11,   57,   361,   2763, ... [A001586]
  [3] 1, 1, 4, 19,  136,  1201,  13024, ... [A007788]
  [4] 1, 1, 5, 29,  265,  3001,  42125, ... [A144015]
  [5] 1, 1, 6, 41,  456,  6301, 108576, ... [A230134]
  [6] 1, 1, 7, 55,  721, 11761, 240247, ... [A227544]
  [7] 1, 1, 8, 71, 1072, 20161, 476288, ... [A235128]
  [8] 1, 1, 9, 89, 1521, 32401, 869049, ... [A230114]
     [A000027]  | [A187277] | [A385898].
            [A028387]   [A385897]
.
Seen as a triangle:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1, 1;
  [3] 1, 1, 2,  1;
  [4] 1, 1, 3,  5,   1;
  [5] 1, 1, 4, 11,  16,    1;
  [6] 1, 1, 5, 19,  57,   61,    1;
  [7] 1, 1, 6, 29, 136,  361,  272,    1;
  [8] 1, 1, 7, 41, 265, 1201, 2763, 1385, 1;
		

Crossrefs

Programs

  • Maple
    MAX := 16: ser := n -> series((1 - sin(n*x))^(-1/n), x, MAX):
    A := (n, k) -> if n = 0 then 1 else k!*coeff(ser(n), x, k) fi:
    seq(lprint(seq(A(n, k), k = 0..8)), n = 0..8);
  • Mathematica
    T[n_, k_, m_] := T[n, k, m] =
      Which[
        n <  0 || k <  0, 0,
        n == 0 && k == 0, 1,
        k == 0, T[n - 1, n - 1, m],
        True, T[n, k - 1, m] + m*T[n - 1, n - k - 1, m]
    ];
    A[n_, k_] := T[k, k, n - k];
    Table[A[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

A(n, k) = T(k, k, n - k) where T(n, k, m) = T(n, k-1, m) + m * T(n-1, n-k-1, m) for k > 0, T(n, 0, m) = T(n-1, n-1, m), and T(0, 0, m) = 1.
Column n is a linear recurrence with kernel [(-1)^k*A135278(n, k), k = 0..n].
Showing 1-1 of 1 results.