A385899 Triangle read by rows: T(n, k, m) = binomial(n, k) * k^n * m^k * (-1)^(n - k) for m = 2.
1, 0, 2, 0, -4, 16, 0, 6, -96, 216, 0, -8, 384, -2592, 4096, 0, 10, -1280, 19440, -81920, 100000, 0, -12, 3840, -116640, 983040, -3000000, 2985984, 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504, 0, -16, 28672, -2939328, 73400320, -700000000, 3009871872, -5903156224, 4294967296
Offset: 0
Examples
Triangle begins: [0] 1; [1] 0, 2; [2] 0, -4, 16; [3] 0, 6, -96, 216; [4] 0, -8, 384, -2592, 4096; [5] 0, 10, -1280, 19440, -81920, 100000; [6] 0, -12, 3840, -116640, 983040, -3000000, 2985984; [7] 0, 14, -10752, 612360, -9175040, 52500000, -125411328, 105413504;
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
Crossrefs
Programs
-
Maple
T := (n, k) -> binomial(n, k) * k^n * 2^k * (-1)^(n - k): seq(seq(T(n, k), k = 0..n), n = 0..7);
-
Mathematica
A385899[n_, k_] := If[k == 0, Boole[n == 0], Binomial[n, k]*k^n*2^k*(-1)^(n - k)]; Table[A385899[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 03 2025 *)