cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385909 Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^(3*n+1).

Original entry on oeis.org

1, 1, 3, 9, 31, 122, 493, 2086, 9106, 40764, 186206, 865068, 4076020, 19437711, 93655043, 455293416, 2230636436, 11003483165, 54607084364, 272453502850, 1365876088389, 6876896373019, 34757806185051, 176291771193079, 897001780346928, 4577362669389502, 23420275560794225, 120123996076924029
Offset: 0

Views

Author

Paul D. Hanna, Jul 29 2025

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^(2*n+1))^n, which holds formally for all y.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 31*x^4 + 122*x^5 + 493*x^6 + 2086*x^7 + 9106*x^8 + 40764*x^9 + 186206*x^10 + 865068*x^11 + 4076020*x^12 + ...
		

Crossrefs

Cf. A355866.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( sum(n=-#A, #A, x^n*(x^(2*n) - Ser(A))^(3*n+1) ), #A-1)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 0 = Sum_{n=-oo..+oo} x^n * (x^n - A(x))^(3*n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(3*n*(2*n-1)) / (1 - A(x)*x^(2*n))^(3*n-1).
a(n) ~ c * d^n / n^(3/2), where d = 5.437310827623... and c = 0.230314472... - Vaclav Kotesovec, Aug 04 2025