A385911 If n = 2^b*3^c, then a(n) = (-1)^b * binomial(b+c, b), else a(n) = 0, for n >= 1.
1, -1, 1, 1, 0, -2, 0, -1, 1, 0, 0, 3, 0, 0, 0, 1, 0, -3, 0, 0, 0, 0, 0, -4, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0
Offset: 1
Keywords
Examples
G.f. A(x) = x - x^2 + x^3 + x^4 - 2*x^6 - x^8 + x^9 + 3*x^12 + x^16 - 3*x^18 - 4*x^24 + x^27 - x^32 + 6*x^36 + 5*x^48 - 4*x^54 + x^64 - 10*x^72 + x^81 - 6*x^96 + ... where A(x) equals the sum of the following series A(x) = (x + x^3 + x^9 + x^27 + ... + x^(3^k) + ...) - (x^2 + 2*x^6 + 3*x^18 + 4*x^54 + ... + (k+1)*x^(2*3^k) + ...) + (x^4 + 3*x^12 + 6*x^36 + 10*x^108 + ... + C(2+k,k)*x^(2^2*3^k) + ...) - (x^8 + 4*x^24 + 10*x^72 + 20*x^216 + ... + C(3+k,k)*x^(2^3*3^k) + ...) + (x^16 + 5*x^48 + 15*x^144 + 35*x^432 + ... + C(4+k,k)*x^(2^4*3^k) + ...) + ... + (-1)^n * Sum_{k>=0} binomial(n+k,k) * x^(2^n*3^k) + ...
Programs
-
PARI
{a(n) = my(p2,p3); if(n<1,0, p2 = valuation(n,2); p3 = valuation(n,3); if(n/(2^p2*3^p3)>1,0, (-1)^p2 * binomial(p2 + p3, p2) ))} for(n=1,100,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (-1)^n * Sum_{k>=0} binomial(n+k,k) * x^(2^n*3^k).
(2) If n = 2^b*3^c, then a(n) = (-1)^b * binomial(b+c, b) else a(n) = 0, for n >= 1.
Comments