cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385933 Number of ways to tile a "central bump" strip of length n with 1 X 1 squares and 1 X 3 rectangles.

Original entry on oeis.org

4, 9, 13, 25, 30, 35, 52, 78, 121, 189, 271, 388, 561, 812, 1204, 1785, 2617, 3837, 5602, 8179, 12000, 17606, 25825, 37881, 55483, 81264, 119089, 174520, 255828, 375017, 549589, 805425, 1180342, 1729779, 2535196, 3715630, 5445561, 7980917, 11696455, 17141772
Offset: 0

Views

Author

Greg Dresden and Saim Usmani, Jul 12 2025

Keywords

Comments

a(n) is the number of ways to tile this "central bump" strip of length n (shown here at n=18) with 1 X 1 squares and 1 X 3 rectangles which can be horizontal or vertical:
_
||_
_____________|_|||_____________
|||_|||_|||_|||_|||_|||_|
|||_|
|_|

Examples

			For n = 0 there is no horizontal strip but there is still the "central bump". Here are the a(n) = 4 ways to tile this (disjoint) structure with 1 X 1 squares and 1 X 3 rectangles.
   _           _           _           _
 _|_|_       _|_|_       _|_|_       _|_|_
|_|_|_|     |_____|     |_|_|_|     |_____|
 _____       _____       _____       _____
|_|_|_|     |_|_|_|     |_____|     |_____|
  |_|         |_|         |_|         |_|
		

Crossrefs

Cf. A000930.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1,1,1,0,0,-1},{4,9,13,25,30,35,52,78,121},61]

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
a(2*n) = a(2*n-2) + a(2*n-4) + 2*a(2*n-6) + a(2*n-7) + a(2*n-8).
a(2*n+1) = a(2*n-1) + 2*a(2*n-4) + a(2*n-5) + 2*a(2*n-6).
a(2*n+3) = 25*b(n)^2 + 26*b(n)*b(n-2) + 10*b(n)*b(n-1) + 9*b(n-2)^2 + 8*b(n-1)*b(n-2) for b(n) = A000930(n) the Narayana Cow sequence.
G.f.: (4 + 5*x + 4*x^2 + 8*x^3 - 3*x^5 - 8*x^6 - x^7)/(1 - x - x^3 + x^4 - x^5 - x^6 + x^9).