A385933 Number of ways to tile a "central bump" strip of length n with 1 X 1 squares and 1 X 3 rectangles.
4, 9, 13, 25, 30, 35, 52, 78, 121, 189, 271, 388, 561, 812, 1204, 1785, 2617, 3837, 5602, 8179, 12000, 17606, 25825, 37881, 55483, 81264, 119089, 174520, 255828, 375017, 549589, 805425, 1180342, 1729779, 2535196, 3715630, 5445561, 7980917, 11696455, 17141772
Offset: 0
Keywords
Examples
For n = 0 there is no horizontal strip but there is still the "central bump". Here are the a(n) = 4 ways to tile this (disjoint) structure with 1 X 1 squares and 1 X 3 rectangles. _ _ _ _ _|_|_ _|_|_ _|_|_ _|_|_ |_|_|_| |_____| |_|_|_| |_____| _____ _____ _____ _____ |_|_|_| |_|_|_| |_____| |_____| |_| |_| |_| |_|
Crossrefs
Cf. A000930.
Programs
-
Mathematica
LinearRecurrence[{1,0,1,-1,1,1,0,0,-1},{4,9,13,25,30,35,52,78,121},61]
Formula
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
a(2*n) = a(2*n-2) + a(2*n-4) + 2*a(2*n-6) + a(2*n-7) + a(2*n-8).
a(2*n+1) = a(2*n-1) + 2*a(2*n-4) + a(2*n-5) + 2*a(2*n-6).
a(2*n+3) = 25*b(n)^2 + 26*b(n)*b(n-2) + 10*b(n)*b(n-1) + 9*b(n-2)^2 + 8*b(n-1)*b(n-2) for b(n) = A000930(n) the Narayana Cow sequence.
G.f.: (4 + 5*x + 4*x^2 + 8*x^3 - 3*x^5 - 8*x^6 - x^7)/(1 - x - x^3 + x^4 - x^5 - x^6 + x^9).
Comments