cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385956 Intersection of A025487 and A002378.

Original entry on oeis.org

2, 6, 12, 30, 72, 210, 240, 420, 1260, 6480, 50400, 147840, 510510, 4324320
Offset: 1

Views

Author

Ken Clements, Aug 10 2025

Keywords

Comments

These numbers are the products of two consecutive integers that are also Hardy-Ramanujan integers; that is, of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n. This sequence is finite with last term a(14) = 2079*2080 = 4324320.

Examples

			a(1) = 2 = 1*2 = 2^1.
a(2) = 6 = 2*3 = 2^1 * 3^1.
a(3) = 12 = 3*4 = 2^2 * 3^1.
a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1.
a(5) = 72 = 8*9 = 2^3 * 3^2.
a(6) = 210 = 14*15 = 2^1 * 3^1 * 5^1 * 7^1.
		

Crossrefs

Programs

  • Mathematica
    Select[FactorialPower[Range[0, 3000], 2], (Max@Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
  • Python
    from sympy import prime, factorint
    def is_Hardy_Ramanujan(n):
        factors = factorint(n)
        p_idx = len(factors)
        if list(factors.keys())[-1] != prime(p_idx):
            return False
        expos = list(factors.values())
        e = expos[0]
        for i in range(1, p_idx):
            if expos[i] > e:
                return False
            e = expos[i]
        return True
    print([ n*(n+1) for n in range(1, 10_000) if is_Hardy_Ramanujan(n*(n+1))])