A385982 a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1) * binomial(k+5,5) * binomial(n-1,k) * a(k) * a(n-1-k).
1, 1, 13, 856, 195525, 124248221, 188647130983, 611439299390984, 3879035706651051809, 44966039381652540837592, 900671755790709615794856671, 29761825253146859538914816137428, 1560353636451919718380582807368070417, 125541398272463750591414559674298911706684
Offset: 0
Keywords
Programs
-
PARI
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, (j+1)*binomial(j+5, 5)*binomial(i-1, j)*v[j+1]*v[i-j])); v;
Formula
E.g.f. A(x) satisfies A(x) = exp( Sum_{k=0..5} binomial(5,k) * x^(k+1)/k! * (d^k/dx^k A(x)) ), where (d^0/dx^0 A(x)) = A(x) by convention.