A385989 a(n) is the least m > n such that 2^n and 2^m are congruent modulo n.
2, 3, 5, 5, 9, 8, 10, 9, 15, 14, 21, 14, 25, 17, 19, 17, 25, 24, 37, 24, 27, 32, 34, 26, 45, 38, 45, 31, 57, 34, 36, 33, 43, 42, 47, 42, 73, 56, 51, 44, 61, 48, 57, 54, 57, 57, 70, 50, 70, 70, 59, 64, 105, 72, 75, 59, 75, 86, 117, 64, 121, 67, 69, 65, 77, 76
Offset: 1
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Module[{m=n+1},While[PowerMod[2,n,n]!=PowerMod[2,m,n], m++]; m]; Array[a,66] (* Stefano Spezia, Jul 16 2025 *)
-
PARI
a(n) = { my (u = Mod(2, n)^n, v = u); for (m = n+1, oo, if (u==v*=2, return (m));); }
Formula
a(2^k) = 2^k + 1 for any k >= 0.
a(n) <= n + A007733(n).