cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386226 The maximum possible number of 8-cycles in an outerplanar graph on n vertices.

Original entry on oeis.org

1, 4, 10, 16, 27, 34, 44, 54, 69, 76, 86, 96, 111, 118, 128, 138, 153, 160, 170, 180, 195, 202, 212, 222, 237, 244, 254, 264, 279, 286, 296, 306, 321, 328, 338, 348, 363, 370, 380, 390, 405, 412, 422, 432, 447, 454, 464, 474, 489, 496, 506, 516, 531, 538, 548
Offset: 8

Views

Author

Stephen Bartell, Jul 15 2025

Keywords

Comments

For n >= 12, the first differences are 4-periodic: 7,10,10,15,7,10,10,15,...

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^8*(4*x^8+4*x^7+4*x^6+4*x^5+10*x^4+6*x^3+6*x^2+3*x+1)/((x+1)*(x^2+1)*(x-1)^2),{x,0,62}],x],8] (* James C. McMahon, Jul 16 2025 *)

Formula

a(n) = 10*n - 99 + 5*floor(n/4) - 3*floor((n+3)/4) for n >= 12.
a(n) ~ (21/2)*n.
G.f.: x^8*(4*x^8+4*x^7+4*x^6+4*x^5+10*x^4+6*x^3+6*x^2+3*x+1)/((x+1)*(x^2+1)*(x-1)^2). - Alois P. Heinz, Jul 15 2025