A386285 Values of u in the quartets (3, u, v, w) of type 2; i.e., values of u for solutions to 3(3 + u) = v(v - w), in positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.
1, 1, 2, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 25, 26, 27, 27, 27, 27, 27, 28, 29, 29, 29, 29, 29, 30
Offset: 1
Examples
First 20 quartets (3,u,v,w) of type 2: m u v w 3 1 6 4 3 1 12 11 3 2 15 14 3 4 21 20 3 5 6 2 3 5 12 10 3 5 24 23 3 6 27 26 3 7 6 1 3 7 15 13 3 7 30 29 3 8 33 32 3 9 18 16 3 9 36 35 3 10 39 38 3 11 7 1 3 11 21 19 3 11 42 41 3 12 9 4 3 12 45 44 3(3+2) = 15(15-14), so (3,2,15,14) is in the list.
Programs
-
Mathematica
solnsB[t_, u_] := Module[{n = t*(t + u)}, Cases[Select[Divisors[n], # < n/# &], d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /; Length[DeleteDuplicates[{t, u, v, w}]] == 4]]]; TableForm[solns = Flatten[Table[Sort[solnsB[3, u]], {u, 50}], 1], TableHeadings -> {None, {"m", "u", "v", "w"}}] Map[#[[2]] &, solns] (*u,A386285*) Map[#[[3]] &, solns] (*v,A386286*) Map[#[[4]] &, solns] (*w,A386287*) (* Peter J. C. Moses, Aug 17 2025 *)
Comments