A386288 Values of u in the quartets (4, u, v, w) of type 2; i.e., values of u for solutions to 4(4 + u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.
1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 1
Keywords
Examples
First 20 quartets (4,u,v,w) of type 2: m u v w 4 1 10 8 4 1 20 19 4 2 8 5 4 2 12 10 4 2 24 23 4 3 14 12 4 3 28 27 4 5 12 9 4 5 18 16 4 5 36 35 4 6 8 3 4 6 20 18 4 6 40 39 4 7 22 20 4 7 44 43 4 8 16 13 4 8 24 22 4 8 48 47 4 9 26 24 4 9 52 51 4(4+2) = 8(8-5), so (4,2,8,5) is in the list.
Programs
-
Mathematica
solnsB[t_, u_] := Module[{n = t*(t + u)}, Cases[Select[Divisors[n], # < n/# &], d_ :> With[{v = n/d, w = n/d - d}, {t, u, v, w} /; Length[DeleteDuplicates[{t, u, v, w}]] == 4]]]; TableForm[solns = Flatten[Table[Sort[solnsB[4, u]], {u, 26}], 1], TableHeadings -> {None, {"m", "u", "v", "w"}}] u1 = Map[#[[2]] &, solns] (*u, A386288 *) v1 = Map[#[[3]] &, solns] (*v, A386628 *) w1 = Map[#[[4]] &, solns] (*w, A386629 *) (* Peter J. C. Moses, Aug 17 2025 *)
Comments