A386295 Primes p such that p+1 is a triprime and 2*p+1 is prime.
11, 29, 41, 113, 173, 281, 641, 653, 761, 1901, 2273, 2693, 2741, 3413, 3593, 5441, 6053, 6113, 6521, 6581, 7121, 7841, 9293, 9473, 10253, 10733, 12101, 12821, 14081, 14621, 15233, 16493, 19301, 19373, 19553, 19913, 20441, 20693, 21341, 21701, 22433, 24473, 27281, 27581, 27893, 28793, 28901
Offset: 1
Keywords
Examples
a(3) = 41 is a term because it is prime, 41 + 1 = 42 = 2 * 3 * 7 is a triprime, and 41 * 2 + 1 = 83 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
select(p -> isprime(p) and isprime(2*p+1) and numtheory:-bigomega(p+1) = 3, [seq(i,i=3..30000,2)]);
-
Mathematica
s= {}; Do[p = Prime[k]; If[3 == PrimeOmega[p + 1] && PrimeQ[2*p +1], AppendTo[s, p]], {k, 2000}];s
Comments