A386303 Positive integers k such that the set {d+k/d : d|k} contains four consecutive integers.
15120, 712800, 3341520, 10533600, 23284800, 85503600, 147026880, 171097920, 302702400, 477338400, 2058376320, 2633510880, 4204418400, 7342876800, 9673606800, 13035884400, 13734761040, 14895223200, 22388788800, 22647794400, 26108082000, 34183749600, 62246804400, 89169141600
Offset: 1
Keywords
Examples
a(1)=15120=M is a term of this sequence since 105, 108, 112, 120 are divisors of M, and 120+M/120=246, 112+M/112=247, 108+M/108=248, 105+M/105=249. It is the first term since no smaller such positive integer exists.
Links
- Giedrius Alkauskas, Consecutive integers in the set S_n={d+n/d: d|n}
- David A. Corneth, 360 x 360 pixels image where white pixels with coordinate (k, m) have 720 | (k * (k + 1) * m * (m + 1))
- David A. Corneth, PARI program
Programs
-
Maple
M:=2*10^10: Ki:={}: Vi:=floor(sqrt(2*M)): Ski:=floor((19*M)^(1/4)/2): for F from 1 to Vi-4 do for y from 1 to min(floor((Vi-F)/2),Ski) do G:=F+2*y+1: if issqr(2*F^2-G^2+2) and issqr(3*F^2-2*G^2+6) then x:=(F+G-1)/2: n:=x*(x+1)*y*(y+1): Ki:=Ki union {n}: end if: end do: end do: Ki;
Extensions
More terms from David A. Corneth, Jul 19 2025
Comments