A386307 Ordered hypotenuses of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), where u and v are positive integers.
15, 25, 30, 35, 39, 50, 51, 55, 60, 65, 65, 70, 75, 75, 78, 85, 85, 87, 91, 95, 100, 102, 105, 110, 111, 115, 119, 120, 123, 125, 130, 130, 135, 140, 143, 145, 145, 150, 150, 155, 156, 159, 165, 169, 170, 170, 174, 175, 175, 182, 183, 185, 185, 187, 190, 195, 195
Offset: 1
Examples
The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 15 is a term.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
A386307:=proc(N) # To get all hypotenuses <= N local i,l,m,u,v,r,x,y,z; l:={}; m:={}; for u from 2 to floor(sqrt(N-1)) do for v to min(u-1,floor(sqrt(N-u^2))) do x:=min(2*u*v,u^2-v^2); y:=max(2*u*v,u^2-v^2); z:=u^2+v^2; m:=m union {[z,y,x]}; if gcd(u,v)=1 and is(u-v,odd) then l:=l union {seq([i*z,i*y,i*x],i=1..N/z)} fi od od; r:=l minus m; return seq(r[i,1],i=1..nops(r)); end proc; A386307(1000);
Comments