A386309 Short legs of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2) ordered by increasing hypotenuse (A386307), where u and v are positive integers.
9, 15, 18, 21, 15, 30, 24, 33, 36, 39, 25, 42, 45, 21, 30, 51, 40, 60, 35, 57, 60, 48, 63, 66, 36, 69, 56, 72, 27, 35, 78, 50, 81, 84, 55, 100, 87, 90, 42, 93, 60, 84, 99, 65, 102, 80, 120, 105, 49, 70, 33, 111, 60, 88, 114, 117, 99, 75, 48, 120, 140, 96, 123, 45
Offset: 1
Examples
The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 12 is a term.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
A386309:=proc(N) # To get all terms with hypotenuses <= N local i,l,m,u,v,r,x,y,z; l:={}; m:={}; for u from 2 to floor(sqrt(N-1)) do for v to min(u-1,floor(sqrt(N-u^2))) do x:=min(2*u*v,u^2-v^2); y:=max(2*u*v,u^2-v^2); z:=u^2+v^2; m:=m union {[z,y,x]}; if gcd(u,v)=1 and is(u-v,odd) then l:=l union {seq([i*z,i*y,i*x],i=1..N/z)} fi od od; r:=l minus m; return seq(r[i,3],i=1..nops(r)); end proc; A386309(1000);
Comments