A386308 Long legs of Pythagorean triples that do not have the form (u^2 - v^2, 2*u*v, u^2 + v^2) ordered by increasing hypotenuse (A386307), where u and v are positive integers.
12, 20, 24, 28, 36, 40, 45, 44, 48, 52, 60, 56, 60, 72, 72, 68, 75, 63, 84, 76, 80, 90, 84, 88, 105, 92, 105, 96, 120, 120, 104, 120, 108, 112, 132, 105, 116, 120, 144, 124, 144, 135, 132, 156, 136, 150, 126, 140, 168, 168, 180, 148, 175, 165, 152, 156, 168, 180
Offset: 1
Examples
The Pythagorean triple (9, 12, 15) does not have the form (u^2 - v^2, 2*u*v, u^2 + v^2), because 15 is not a sum of two nonzero squares. Therefore 12 is a term.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
A386308:=proc(N) # To get all terms with hypotenuses <= N local i,l,m,u,v,r,x,y,z; l:={}; m:={}; for u from 2 to floor(sqrt(N-1)) do for v to min(u-1,floor(sqrt(N-u^2))) do x:=min(2*u*v,u^2-v^2); y:=max(2*u*v,u^2-v^2); z:=u^2+v^2; m:=m union {[z,y,x]}; if gcd(u,v)=1 and is(u-v,odd) then l:=l union {seq([i*z,i*y,i*x],i=1..N/z)} fi od od; r:=l minus m; return seq(r[i,2],i=1..nops(r)); end proc; A386308(1000);
Comments