A386310 Number of divisors d of n such that 2*d^d == 0 (mod n).
1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 3, 2, 2, 3, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 4, 2, 4, 1, 2, 1, 6, 1, 3, 1, 2, 1, 2, 1, 2, 2, 5, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 5, 1, 4, 2, 4
Offset: 1
Programs
-
Magma
[1 + #[d: d in [1..n-1] | n mod d eq 0 and Modexp(d,d,n) eq -Modexp(d,d,n) mod n]: n in [1..100]];
-
Mathematica
Table[Length[Select[Divisors[n], PowerMod[#, #, n] == Mod[n - PowerMod[#, #, n], n] &]], {n, 1, 100}] (* Vaclav Kotesovec, Aug 23 2025 *)
-
PARI
a(n) = sumdiv(n, d, 2*Mod(d, n)^d == 0); \\ Michel Marcus, Aug 30 2025