cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A386687 Partial sums of A386369.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 99, 117, 135, 153, 171, 189, 207, 225, 251, 277, 303, 329, 355, 381, 407, 433, 459, 485, 511, 537, 563, 589, 615, 641, 667, 693, 719, 745, 771, 797, 823, 849, 875, 901, 927, 953, 979, 1005, 1031, 1057, 1083, 1109
Offset: 1

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{s = 0, a = 0},Table[If[IntegerQ[Sqrt[s += a]], a = n]; s, {n, 100}]]

Formula

a(n) = Sum_{k=1..n} A386369(k).

A386370 Square roots of partial sums of A386369 that are square numbers.

Original entry on oeis.org

0, 1, 3, 9, 15, 37, 47, 117, 327, 957, 2847, 8517, 25527, 33129, 33291, 46653, 66855, 147661, 161689, 218691, 503481, 629673, 919347, 2076921, 3007455, 7100533, 7931517, 9022563, 9100641, 11272057, 11437383, 15080379, 32539617, 37443597, 37821775, 53419727
Offset: 1

Views

Author

Rémy Sigrist, Jul 19 2025

Keywords

Examples

			A386369(1) + ... + A386369(6) = 3^2, so 3 belongs to this sequence.
		

Crossrefs

Programs

  • Mathematica
    Module[{s = 0, a = 0}, Table[If[IntegerQ[#], a = k; #, Nothing] & [Sqrt[s += a]], {k, 10^5}]] (* Paolo Xausa, Jul 29 2025, after Rémy Sigrist  *)
  • PARI
    { t = 0; v = 0; for (n = 1, 86903746, t += v; if (issquare(t), print1 (sqrtint(t) ", "); v = n;);); }

Formula

a(n) = sqrt(A386688(n)). - Paolo Xausa, Jul 29 2025

Extensions

Offset changed to 1 by Paolo Xausa, Jul 29 2025

A385254 Distinct terms in A386369.

Original entry on oeis.org

0, 1, 2, 6, 18, 26, 70, 82, 222, 642, 1902, 5682, 17022, 51042, 59778, 59958, 77774, 107258, 268870, 285010, 361086, 930666, 1084314, 1498134, 3813282, 5053994, 13240150, 14183598, 15487758, 15579122, 18418666, 18622506, 23809998, 58728474, 64572254, 65013058
Offset: 1

Views

Author

David A. Corneth and Paolo Xausa, Jul 29 2025

Keywords

Comments

a(1) = 0. a(n) is the smallest positive integer > a(n-1) such that Sum_{m = 1..n-1} (a(m+1)-a(m))*a(m) is a perfect square.

Examples

			The first 6 terms of A386369 are 0, 1, 2, 2, 2, 2 which has partial sum 9. We have A386369(7) = 6. To find a(4) we look for the next term in A386369 that is larger than 6 i.e. solve 6*(k-6) + 9 = s^2 for some k. Rewrite gives 6*(k-6) = s^2 - 9 = (s-3)(s + 3). So we have 4 cases:
   1 | s - 3, 6 | s + 3
   2 | s - 3, 3 | s + 3
   3 | s - 3, 2 | s + 3
   6 | s - 3, 1 | s + 3
Solving for smallest t > 6 gives s = 9. So 6*(k-6) = 9^2 - 9 = 72 and so k = 18.
		

Crossrefs

Cf. A386369.

Programs

  • Mathematica
    Module[{s = 0, a = 0}, Table[If[IntegerQ[Sqrt[s += a]], a = k-1, Nothing], {k, 10^5}]]
  • PARI
    \\ See Corneth link

Extensions

More terms from Michael De Vlieger, Jul 29 2025

A385986 a(1) = 2, and for any n > 1, a(n) is the largest k < n such that a(1) + ... + a(k) is prime.

Original entry on oeis.org

2, 1, 2, 3, 3, 5, 5, 5, 5, 9, 9, 9, 9, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 65, 65, 65
Offset: 1

Views

Author

Rémy Sigrist, Jul 14 2025

Keywords

Comments

In other words: a(1) = 2, and for any n > 0, if a(1) + ... + a(n) is prime then a(n+1) = n, otherwise a(n+1) = a(n).
This sequence is unbounded: for any n > 1, let P = a(1) + ... + a(a(n)); P is prime and a(a(n)+1) = a(n); as P > a(n), P and a(n) are coprime, hence, by Dirichlet's theorem on arithmetic progressions, P + k*a(n) is prime for some minimal k > 0, and a(a(n)+k+1) = a(n)+k > a(n).

Examples

			Sequence begins:
  n   a(n)  a(1)+...+a(n)  Prime?
  --  ----  -------------  ------
   1     2              2  Yes
   2     1              3  Yes
   3     2              5  Yes
   4     3              8  No
   5     3             11  Yes
   6     5             16  No
   7     5             21  No
   8     5             26  No
   9     5             31  Yes
  10     9             40  No
  11     9             49  No
  12     9             58  No
  13     9             67  Yes
  14    13             80  No
		

Crossrefs

See A385988 and A386369 for similar sequences.
Cf. A385987 (corresponding prime numbers).

Programs

  • Mathematica
    v = 2;t = 0;values={};Do[AppendTo[values,v];t+=v;If[PrimeQ[t],v=n],{n, 1, 68}];values (* James C. McMahon, Jul 22 2025 *)
  • PARI
    { v = 2; t = 0; for (n = 1, 68, print1 (v", "); if (isprime(t += v), v = n);); }

A386688 Squares in A386687.

Original entry on oeis.org

0, 1, 9, 81, 225, 1369, 2209, 13689, 106929, 915849, 8105409, 72539289, 651627729, 1097530641, 1108290681, 2176502409, 4469591025, 21803770921, 26143332721, 47825753481, 253493117361, 396488086929, 845198906409, 4313600840241, 9044785577025, 50417568884089, 62908961921289
Offset: 1

Views

Author

Paolo Xausa, Jul 29 2025

Keywords

Crossrefs

Intersection of A000290 and A386687.

Programs

  • Mathematica
    Module[{s = 0, a = 0}, Table[If[IntegerQ[Sqrt[s += a]], a = k; s, Nothing], {k, 10^5}]]

Formula

a(n) = A386370(n)^2.
Showing 1-5 of 5 results.