cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386378 Integers x such that there exist four integers 00 and w>0 such that sigma(x)^3 = sigma(y)^3 = sigma(z)^3 = x^3 + y^3 + z^3 + t^3 + w^3.

Original entry on oeis.org

30, 62, 90, 174, 238, 357, 390, 440, 495, 552, 762, 870, 894, 924, 1056, 1146, 1248, 1386, 1560, 1740, 1770, 1782, 1824, 1880, 1938, 1992, 2046, 2208, 2262, 2472, 2568, 2625, 2670, 2686, 2730, 2840, 2856, 3000, 3190, 3382, 3630, 3666, 3720, 3738, 3828, 3885, 3960, 3984
Offset: 1

Views

Author

S. I. Dimitrov, Jul 20 2025

Keywords

Comments

The numbers x, y, z, t and w form a sigma-cubic quintuple. See Dimitrov link.

Examples

			(174, 190, 323, 5, 94) is such a quintuple because sigma(174)^3 = sigma(190)^3 = sigma(323)^3 = 360^3 = 174^3 + 190^3 + 323^3 + 5^3 + 94^3.
		

Crossrefs

Programs

  • PARI
    is23(n) = my(z); for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3, &z) && return([k,z]));
    isok3(x) = my(s=sigma(x), v=select(z->(z>=x), invsigma(s))); if (#v >= 1, for (i=1, #v, for (j=1, #v, my(k=s^3 - x^3 - v[i]^3-v[j]^3); if (k>0, my(tw = is23(k)); if (tw, return([x, v[i], v[j], tw[1], tw[2]])););););); \\ Michel Marcus, Jul 22 2025

Extensions

Corrected and extended by Michel Marcus, Jul 22 2025