cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386393 Triangle T(n, k) (1 <= k <= n) read by rows: T(n, k) is the numerator of R(n, k) where R(n, k) = R(n, k-1)/2 + R(n-1, k-1) for 1 < k <= n with R(n, 1) = R(n-1, n-1) for n > 1, R(1, 1) = 1.

Original entry on oeis.org

1, 1, 3, 3, 7, 19, 19, 43, 99, 251, 251, 555, 1243, 2827, 6843, 6843, 14875, 32635, 72411, 162875, 381851, 381851, 819803, 1771803, 3860443, 8494747, 18918747, 43357211, 43357211, 92234139, 197168923, 423959707, 918096411, 2005424027, 4427023643, 9976746651
Offset: 1

Views

Author

Mikhail Kurkov, Jul 20 2025

Keywords

Comments

Denominator of R(n, k) is 2^((n-1)*(n-2)/2+k-1).

Examples

			Triangle begins:
       1;
       1,      3;
       3,      7,      19;
      19,     43,      99,     251;
     251,    555,    1243,    2827,    6843;
    6843,  14875,   32635,   72411,  162875,   381851;
  381851, 819803, 1771803, 3860443, 8494747, 18918747, 43357211;
		

Crossrefs

Cf. A305562.

Programs

  • PARI
    rows_upto(n) = {my(A, v1, v2, v3);
    v1 = vector(n, i, 0); v1[1] = 1;
    v2 = vector(n, i, 0); v2[1] = [1];
    for(i=2, n, v3 = v1; v1[1] = v3[i-1];
    for(j=2, i, v1[j] = v1[j-1]/2 + v3[j-1]);
    A = 2^((i-1)*(i-2)/2);
    v2[i] = vector(i, j, A*2^(j-1)*v1[j])); v2}