A386396 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/7)} a(7*k) * a(n-1-7*k).
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 17, 27, 38, 50, 63, 77, 92, 200, 325, 468, 630, 812, 1015, 1240, 2728, 4488, 6545, 8925, 11655, 14763, 18278, 40508, 67158, 98728, 135751, 178794, 228459, 285384, 635628, 1059380, 1566040, 2165800, 2869685, 3689595, 4638348
Offset: 0
Keywords
Links
- Wikipedia, Fuss-Catalan number
Crossrefs
Programs
-
PARI
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r); a(n) = apr(n\7, 8, n%7+1);
Formula
For k=0..6, a(7*n+k) = (k+1) * binomial(8*n+k+1,n)/(8*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..6} A(w^k*x)), where w = exp(2*Pi*i/7).