A386401 a(n) = numerator(sigma(n)*phi(n)/n^2).
1, 3, 8, 7, 24, 2, 48, 15, 26, 18, 120, 7, 168, 36, 64, 31, 288, 13, 360, 21, 128, 90, 528, 5, 124, 126, 80, 6, 840, 16, 960, 63, 320, 216, 1152, 91, 1368, 270, 448, 9, 1680, 32, 1848, 105, 208, 396, 2208, 31, 342, 93, 256, 147, 2808, 20, 576, 45, 320, 630, 3480, 56
Offset: 1
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 5.3.21 on page 169.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Numerator[DivisorSigma[1,n]EulerPhi[n]/n^2]; Array[a,60]
-
PARI
a(n) = {my(f = factor(n)); numerator(sigma(f) * eulerphi(f) / n^2);} \\ Amiram Eldar, Jul 21 2025
Formula
From Amiram Eldar, Jul 21 2025: (Start)
Let f(n) = a(n)/A386402(n) = sigma(n)*phi(n)/n^2. Then:
f(n) = A062354(n)/n^2.
f(n) is multiplicative with f(p^e) = 1 - 1/p^(e+1).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/p^(s+1) - 1/p^(s+2)+ 1/p^(2*s+2)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465). (End)
Comments