cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386415 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^4)^(2/3).

Original entry on oeis.org

1, 6, 135, 4140, 146475, 5629338, 228355281, 9622693080, 417122726490, 18480617374050, 833136935399208, 38094723501749460, 1762459398803643930, 82353342267057244950, 3880848811889775489300, 184228926273804535479216, 8801795826996054546077865, 422898288144162288398536860
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Maple
    A386415 := proc(n)
        9^n*binomial((8*n+2)/3,n)/(4*n+1) ;
    end proc:
    seq(A386415(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • Mathematica
    A386415[n_] := 9^n * Binomial[(8*n + 2)/3, n]/(4*n + 1);
    Array[A386415, 20, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 8/3, 2/3);

Formula

a(n) = 9^n * binomial((8*n+2)/3,n)/(4*n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A386416.
D-finite with recurrence 5*n*(n-1)*(n-2)*(5*n-4)*(5*n+2)*(5*n-7)*(5*n-1)*a(n) -3456*(4*n-11)*(8*n-19)*(8*n-13)*(4*n-5)*(8*n-7)*(2*n-1)*(8*n-1)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A386413 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^2)^(2/3).

Original entry on oeis.org

1, 6, 63, 792, 10935, 160056, 2438667, 38263752, 614014830, 10029572280, 166203389781, 2787232297680, 47213065271268, 806618756189736, 13883029872725475, 240491818267745760, 4189678646994012501, 73357895462268102840, 1290223574267814268290, 22784365638084466567800
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386413[n_] := 9^n*Binomial[(4*n + 2)/3, n]/(2*n + 1);
    Array[A386413, 25, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 4/3, 2/3);

Formula

a(n) = 9^n * binomial((4*n+2)/3,n)/(2*n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A078532.
D-finite with recurrence n*(n-2)*(n+2)*a(n) -216*(2*n-5)*(4*n-7)*(4*n-1)*a(n-3)=0. - R. J. Mathar, Jul 30 2025
Showing 1-2 of 2 results.