cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386460 Decimal expansion of the surface area of an augmented truncated cube with unit edges.

Original entry on oeis.org

3, 4, 3, 3, 8, 2, 8, 8, 0, 4, 6, 4, 3, 7, 5, 8, 2, 3, 6, 8, 5, 9, 9, 2, 2, 6, 2, 6, 6, 6, 1, 4, 5, 9, 7, 8, 8, 6, 5, 2, 5, 1, 3, 4, 5, 1, 5, 2, 0, 0, 6, 2, 2, 6, 1, 5, 9, 3, 4, 2, 1, 8, 3, 1, 8, 2, 6, 3, 1, 2, 3, 8, 3, 5, 3, 4, 7, 4, 7, 0, 4, 9, 9, 7, 4, 7, 3, 1, 3, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 23 2025

Keywords

Comments

The augmented truncated cube is Johnson solid J_66.

Examples

			34.33828804643758236859922626661459788652513451520...
		

Crossrefs

Cf. A386459 (volume).

Programs

  • Mathematica
    First[RealDigits[15 + Sqrt[200] + Sqrt[27], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J66", "SurfaceArea"], 10, 100]]

Formula

Equals 15 + 10*sqrt(2) + 3*sqrt(3) = 15 + 10*A002193 + A010482.
Equals the largest root of x^4 - 60*x^3 + 896*x^2 + 120*x - 21596.

A386464 Decimal expansion of the volume of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

8, 7, 3, 6, 3, 7, 0, 9, 8, 7, 7, 7, 0, 4, 0, 7, 4, 6, 8, 5, 6, 1, 9, 1, 0, 0, 1, 2, 5, 1, 4, 1, 6, 7, 7, 1, 0, 1, 0, 0, 5, 8, 5, 5, 1, 1, 5, 4, 6, 6, 7, 2, 9, 2, 4, 9, 8, 1, 9, 0, 0, 2, 5, 5, 2, 8, 9, 6, 3, 8, 2, 0, 7, 7, 4, 9, 8, 8, 8, 2, 5, 4, 6, 4, 7, 5, 2, 2, 5, 1
Offset: 2

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			87.3637098777040746856191001251416771010058551...
		

Crossrefs

Cf. A386465 (surface area).

Programs

  • Mathematica
    First[RealDigits[505/12 + 81/4*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "Volume"], 10, 100]]

Formula

Equals 505/12 + 81*sqrt(5)/4 = 505/12 + 81*A204188.
Equals A377695 + A179590.
Equals the largest root of 36*x^2 - 3030*x - 10055.
Showing 1-2 of 2 results.