A386465 Decimal expansion of the surface area of an augmented truncated dodecahedron with unit edges.
1, 0, 2, 1, 8, 2, 0, 9, 2, 2, 2, 0, 2, 1, 3, 9, 1, 8, 5, 7, 7, 9, 8, 8, 5, 4, 2, 4, 5, 2, 8, 1, 5, 3, 3, 2, 0, 5, 2, 9, 8, 4, 2, 1, 5, 9, 5, 3, 6, 1, 4, 3, 6, 8, 9, 9, 8, 1, 3, 2, 6, 8, 5, 2, 1, 3, 9, 0, 7, 1, 9, 0, 7, 8, 1, 5, 0, 3, 9, 6, 6, 7, 2, 0, 5, 9, 0, 9, 3, 2
Offset: 3
Examples
102.18209222021391857798854245281533205298421595361...
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10000
- Wikipedia, Augmented truncated dodecahedron.
Programs
-
Mathematica
First[RealDigits[(20 + 25*Sqrt[3] + 110*Sqrt[#] + Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *) First[RealDigits[PolyhedronData["J68", "SurfaceArea"], 10, 100]]
Formula
Equals (20 + 25*sqrt(3) + 110*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/4 = (20 + 25*A002194 + 110*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 10240*x^7 - 3955200*x^6 + 122240000*x^5 + 16152924000*x^4 - 343551280000*x^3 - 11461251137500*x^2 + 131995515375000*x + 634637481578125.
Comments