cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A387072 Index of n in A386482, or -1 if n does not appear in A386482.

Original entry on oeis.org

1, 2, 5, 3, 17, 4, 11, 9, 6, 8, 24, 7, 44, 10, 16, 14, 52, 13, 31, 15, 12, 23, 73, 22, 18, 21, 26, 20, 126, 19, 57, 29, 25, 28, 41, 27, 115, 30, 43, 40, 809, 39, 821, 38, 42, 37, 76, 36, 49, 35, 51, 34, 652, 33, 70, 48, 32, 47, 144, 46, 189, 56, 50, 55, 45, 54
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Cf. A386482.

Programs

  • Mathematica
    Block[{a, j, k, p, m, s, nn},
      nn = 2^10; a[] := 0; m[] := 1; a[1] = 1; j = a[2] = 2;
      Monitor[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[a[k*p] != 0, k != 0], k--];
            If[k == 0, k = m; While[a[k*p] != 0, k++] ]; k *= p,
          k = j - 1; While[And[Or[a[k] != 0, CoprimeQ[j, k]], k != 1], k--];
          If[k == 1, k += j; While[Or[a[k] != 0, CoprimeQ[j, k] ], k++] ] ];
        Set[{a[k], j}, {n, k}], {n, 3, nn}], n];
      k = 1; Reap[While[a[k] > 0, Sow[a[k]]; k++] ][[-1, 1]] ]

A386487 A386482(n) - n.

Original entry on oeis.org

0, 0, 1, 2, -2, 3, 5, 2, -1, 4, -4, 9, 5, 2, 5, -1, -12, 7, 11, 8, 5, 2, -1, -13, 8, 1, 9, 6, 3, 8, -12, 25, 21, 18, 15, 12, 9, 6, 3, 0, -6, 3, -4, -31, 20, 14, 11, 8, 0, 13, 0, -35, 15, 12, 9, 6, -26, 35, 31, 28, 25, 22, 19, 16, 13, 10, 7, 4, 1, -15, 4, -3, -50, 18, 19, -29, 64, 60, 57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2025

Keywords

Crossrefs

Cf. A386482.

A387076 Primes in the order in which they appear in A386482.

Original entry on oeis.org

2, 3, 7, 5, 11, 19, 13, 17, 31, 23, 47, 37, 29, 59, 61, 79, 131, 83, 107, 103, 127, 137, 317, 53, 67, 71, 73, 211, 41, 43, 97, 263, 139, 89, 347, 379, 149, 457, 173, 179, 947, 101, 109, 191, 647, 181, 269, 271, 431, 433, 439, 113, 557, 193, 569, 449, 197, 151
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 3000; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 1;
      {1}~Join~Monitor[Most@ Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        If[PrimeQ[k], Sow[k]];
        Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]

A387077 Indices of prime terms in A386482.

Original entry on oeis.org

2, 5, 11, 17, 24, 31, 44, 52, 57, 73, 76, 115, 126, 144, 189, 207, 236, 287, 310, 320, 368, 453, 479, 652, 667, 674, 678, 684, 809, 821, 832, 837, 996, 1016, 1034, 1088, 1206, 1289, 1425, 1497, 1532, 2020, 2026, 2053, 2079, 2425, 2442, 2445, 2522, 2542, 2578, 2637
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 3000; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 1;
      {1}~Join~Monitor[Most@ Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        If[PrimeQ[k], Sow[n]];
        Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]

A386483 Index of n-th prime in A386482, or -1 if that prime is missing.

Original entry on oeis.org

2, 5, 17, 11, 24, 44, 52, 31, 73, 126, 57, 115, 809, 821, 76, 652, 144, 189, 667, 674, 678, 207, 287, 1016, 832, 2020, 320, 310, 2026, 2637, 368, 236, 453, 996, 1206, 3017, 3541, 3544, 4876, 1425, 1497, 2425, 2053, 2747, 3006, 4867, 684, 12680, 12803, 12808, 12898, 12901, 6247, 12907, 13279, 837, 2442, 2445, 9513, 9795, 13080, 13088
Offset: 1

Views

Author

N. J. A. Sloane, Aug 16 2025

Keywords

Crossrefs

Programs

  • PARI
    \\ See Links section.

A387073 Record high points in A386482.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 14, 21, 25, 30, 33, 36, 38, 57, 65, 68, 93, 94, 141, 148, 150, 174, 177, 236, 244, 247, 260, 316, 393, 415, 428, 515, 635, 685, 951, 1055, 1067, 1315, 1388, 1516, 1639, 1828, 1903, 1969, 2841, 3235, 3342, 3414, 3592, 4516, 4936, 5948, 7444, 7652
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 6000; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 0;
      {1, 2}~Join~Monitor[Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        If[k > r, r = k; Sow[k]];
        Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]

A387074 Indices of record high points in A386482.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 12, 18, 19, 25, 27, 30, 32, 45, 53, 58, 75, 77, 116, 124, 127, 143, 145, 190, 196, 197, 208, 237, 288, 311, 321, 369, 454, 480, 685, 833, 838, 1035, 1089, 1207, 1290, 1426, 1498, 1533, 2080, 2668, 2785, 2888, 3031, 3782, 4003, 4965, 5748
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 6000; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 0;
      {1, 2}~Join~Monitor[Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        If[k > r, r = k; Sow[n]];
        Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]

A386484 a(n) is the index where A387090(n) appears in A386482.

Original entry on oeis.org

1, 2, 5, 17, 24, 44, 52, 73, 126, 809, 821, 1016, 2020, 2026, 2637, 3017, 3541, 3544, 4876, 12680, 12803, 12808, 12898, 12901, 12907, 13279, 17729, 17734, 27224, 33351, 35295, 35310, 44605, 44609, 44925, 44930, 44935, 44939, 45176, 45279, 45703, 45723, 46125, 46138, 46154, 46157, 62957, 63713, 63720, 63869, 63872, 63877, 115110, 115116
Offset: 1

Views

Author

N. J. A. Sloane, Aug 16 2025

Keywords

Comments

A387090 lists the numbers that are the slowest to appear in A386482, and the present sequence tells when they do appear. This is of interest because we do not know if every number appears in A386482.

Crossrefs

A387075 First differences of A386482.

Original entry on oeis.org

1, 2, 2, -3, 6, 3, -2, -2, 6, -7, 14, -3, -2, 4, -5, -10, 20, 5, -2, -2, -2, -2, -11, 22, -6, 9, -2, -2, 6, -19, 38, -3, -2, -2, -2, -2, -2, -2, -2, -5, 10, -6, -26, 52, -5, -2, -2, -7, 14, -12, -34, 51, -2, -2, -2, -31, 62, -3, -2, -2, -2, -2, -2, -2, -2, -2
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Crossrefs

Cf. A386482.

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 120; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 0;
      {1, 2}~Join~Monitor[Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        Sow[k - j]; Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]

A387078 Run lengths of A386482(n) mod 2 == n mod 2.

Original entry on oeis.org

1, 3, 2, 4, 2, 3, 3, 5, 3, 4, 2, 8, 5, 3, 4, 4, 2, 11, 4, 2, 2, 22, 16, 5, 3, 1, 2, 12, 6, 31, 14, 4, 3, 8, 3, 28, 2, 37, 14, 10, 12, 9, 2, 41, 7, 61, 24, 24, 2, 134, 71, 51, 97, 3, 2, 127, 69, 39, 15, 64, 55, 56, 26, 100, 37, 32, 40, 33, 2, 440, 107, 196, 391
Offset: 1

Views

Author

Michael De Vlieger, Aug 15 2025

Keywords

Comments

Let S = A386482.
Beginning with S(481) = 948, there are 100 consecutive even terms in S. Starting with S(730076) = 1026330, there are 100869 consecutive even terms in S.

Examples

			S begins as follows, grouping odd terms in brackets [], and even in parentheses ():
   [1], (2, 4, 6), [3, 9], (12, 10, 8, 14), [7, 21], (18, 16, 20), [15, 5, 25], ...
This sequence takes run lengths in the order they appear, therefore a(1) = 1, a(2) = 3, a(3) = 2, a(4) = 4, a(5) = 2, etc. Hence a(n) for odd n pertains to run lengths of odd terms in S, while a(n) for even n pertains to run lengths of even terms in same.
		

Crossrefs

Cf. A386482.

Programs

  • Mathematica
    Block[{c, j, k, m, p, r, nn},
      nn = 2^12; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; r = 1;
      {1}~Join~Monitor[Most@ Reap[Do[
        If[PrimePowerQ[j],
          Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@
            FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];
            If[k == 0, k = m; While[c[k*p], k++]]; k *= p,
          k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--];
            If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ];
        If[Mod[j, 2] == Mod[k, 2], r++, Sow[r]; r = 1];
        Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ]
Showing 1-10 of 27 results. Next