cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386489 Expansion of (1-x)/((1+x+2*x^2)*(1-4*x+x^2)).

Original entry on oeis.org

1, 2, 7, 30, 109, 402, 1511, 5638, 21021, 78474, 292887, 1093006, 4079181, 15223810, 56815879, 212039702, 791343293, 2953333114, 11021988791, 41134623134, 153516503405, 572931388658, 2138209053735, 7979904827430, 29781410249821, 111145736175722
Offset: 0

Views

Author

Greg Dresden and Madison Lingchen Zhou, Aug 20 2025

Keywords

Comments

a(n) is the number of ways to tile a 2 X n board with squares, dominoes, and L-shaped quadrominoes. Here is one of the a(4)=109 possible tilings of a 2 X 4 board:
| | |||
Compare to A030186 which counts the tilings with just squares and dominos.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, 7, -2}, {1, 2, 7, 30}, 30]

Formula

a(n) = 3*a(n-1) + a(n-2) + 7*a(n-3) - 2*a(n-4).
a(n) = A030186(n) + 2*sum_{i=0..n-2}(A033505(n-i-3)*a(i) + A030186(n-i-3)*(a(i)+2*sum_{j=0..i} a(j)).
a(n) ~ (2 + sqrt(3))^(n+2) / (18 + 4*sqrt(3)). - Vaclav Kotesovec, Aug 21 2025
23*a(n) = -4*A001353(n)+13*A001353(n+1) +10*A001607(n+1)+8*A001607(n) . - R. J. Mathar, Aug 26 2025