A386526 Products m of primorials (i.e., m in A025487) such that both m-1 and m+1 are not squarefree.
2097152, 13436928, 46656000, 1073741824, 1360800000, 12884901888, 1486016741376, 330225942528000, 358318080000000, 670777794086400, 1290482565120000, 64925062108545024, 69918208819200000, 137274424455168000, 164341563462254592, 277326388342554624, 415989582513831936
Offset: 1
Keywords
Examples
Table of n, a(n), showing exponents of prime factors of a(n), and the prime decomposition of a(n)-1 and a(n)+1 for n = 1..6: Exponents n a(n) 2.3.5.7 a(n)-1 a(n)+1 ----------------------------------------------------------------------------- 1 2097152 21 7^2, 127, 337 3^2, 43, 5419 2 13436928 11.8 7^2, 274223 11^2, 111049 3 46656000 9.6.3 13^2, 359, 769 7, 19^2, 37, 499 4 1073741824 30 3^2, 7, 11, 31, 151, 331 5^2, 13, 41, 61, 1321 5 1360800000 8.5.5.1 13^2, 107, 75253 11^2, 167, 67343 6 12884901888 32.1 11, 13^3, 563, 947 19^2, 35692249
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..164 (all terms less than A002110(21)).
Programs
-
Mathematica
(* Load function f from A025487, then: *) Select[Union@ Flatten@ f[12], AllTrue[# + {-1, 1}, Not @* SquareFreeQ] &]
Comments