A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2
Offset: 1
Keywords
Examples
The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable. The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3. The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable. The a(n) families for n = 2, 96, 384, 1536, 3456, 20736: {{1}} {{1},{5}} {{1},{7}} {{1},{9}} {{3},{7}} {{4},{8}} {{1},{2,3}} {{1},{2,5}} {{1},{2,7}} {{3},{1,6}} {{4},{1,7}} {{1},{3,4}} {{1},{3,6}} {{3},{2,5}} {{4},{2,6}} {{1},{4,5}} {{7},{1,2}} {{4},{3,5}} {{1,2},{3,4}} {{8},{1,3}} {{1,3},{2,6}}
Crossrefs
A279790 counts disjoint families on strongly normal multisets.
Programs
-
Mathematica
disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]]; prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]]; seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])]; Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}]
Comments