A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts.
1, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 6, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 1, 4, 3, 2, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 12, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 12, 6, 0, 0, 0, 3, 6, 4, 2, 0
Offset: 2
Examples
Row n = 21 counts the following permutations: . 112121 111212 111221 111122 . 121121 112112 112211 221111 121211 121112 122111 211121 211112 211211 212111 Triangle begins . 1 0 1 2 0 0 0 1 1 2 0 0 0 0 1 6 0 0 2 2 2 0 0 2 2 0 0 0 0 0 1 6 6 0 0 0 0 0 0 0 1 0 0 3 2 0 1 4 3 2 0 24 0 0 0 0 0 0 0 0 0 1 12 12 6 0 0 0 0 0 0 0 0 0 1 2 12 6 0 0 0 3 6 4 2 0
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; aqt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==x]]; Table[Table[Length[aqt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}]
Comments