A386579 Number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent unequal parts.
1, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 6, 0, 2, 2, 2, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 6, 6, 1, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 2, 3, 4, 1, 0, 0, 0, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 2, 0, 2, 4, 6, 3, 0
Offset: 2
Examples
Row n = 21 counts the following permutations: . 111122 111221 111212 112121 . 221111 112211 112112 121121 122111 121112 121211 211112 211121 211211 212111 Triangle begins: . 1 1 0 0 2 1 0 0 0 2 1 1 0 0 0 0 0 6 0 2 2 2 0 2 2 0 1 0 0 0 0 0 0 6 6 1 0 0 0 0 0 0 2 3 0 0 0 2 3 4 1 0 0 0 24 1 0 0 0 0 0 0 0 0 6 12 12 1 0 0 0 0 0 0 0 0 0 6 12 2 0 2 4 6 3 0
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; ugt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]!=q[[#+1]]&]]==x]]; Table[Table[Length[ugt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}]
Comments