A386585 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k = 0..n parts such that any multiset whose multiplicities are the parts of y is separable.
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 1, 5, 5, 5, 3, 2, 1, 1, 0, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1
Offset: 0
Examples
Row n = 8 counts the following partitions: . . 44 431 4211 41111 311111 2111111 11111111 422 3311 32111 221111 332 3221 22211 2222 with the following separable multisets: . . 11112222 11112223 11112234 11112345 11123456 11234567 12345678 11112233 11122234 11122345 11223456 11122233 11122334 11223345 11223344 Triangle begins: 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 2 1 1 0 0 1 2 2 1 1 0 0 1 3 3 2 1 1 0 0 1 3 4 3 2 1 1 0 0 1 5 5 5 3 2 1 1 0 0 1 4 7 6 5 3 2 1 1
Crossrefs
A279790 counts disjoint families on strongly normal multisets.
Programs
-
Mathematica
sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={}; mst[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}]; Table[Length[Select[IntegerPartitions[n,{k}],sepQ[mst[#]]&]],{n,0,5},{k,0,n}]
Comments