A386586 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k parts such that any multiset whose multiplicities are the parts of y is inseparable.
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 4, 4, 2, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
The partition y = (7,2,1) is the multiplicities of the multiset {1,1,1,1,1,1,1,2,2,3}, which is inseparable, so y is counted under T(10,3). Row n = 10 counts the following partitions (A = 10): . A 91 811 7111 61111 . . . . . 82 721 6211 73 631 64 622 Triangle begins: 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0 0 0 1 3 2 1 0 0 0 0 0 1 3 2 1 0 0 0 0 0 0 1 4 4 2 1 0 0 0 0 0
Crossrefs
Programs
-
Mathematica
insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={}; ptm[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}]; Table[Length[Select[IntegerPartitions[n,{k}],insepQ[ptm[#]]&]],{n,0,5},{k,0,n}]
Comments