cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A239455 Number of Look-and-Say partitions of n; see Comments.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0

Views

Author

Keywords

Comments

Suppose that p = x(1) >= x(2) >= ... >= x(k) is a partition of n. Let y(1) > y(2) > ... > y(h) be the distinct parts of p, and let m(i) be the multiplicity of y(i) for 1 <= i <= h. Then we can "look" at p as "m(1) y(1)'s and m(2) y(2)'s and ... m(h) y(h)'s". Reversing the m's and y's, we can then "say" the Look-and-Say partition of p, denoted by LS(p). The name "Look-and-Say" follows the example of Look-and-Say integer sequences (e.g., A005150). As p ranges through the partitions of n, LS(p) ranges through all the Look-and-Say partitions of n. The number of these is A239455(n).
The Look-and-Say array is distinct from the Wilf array, described at A098859; for example, the number of Look-and-Say partitions of 9 is A239455(9) = 16, whereas the number of Wilf partitions of 9 is A098859(9) = 15. The Look-and-Say partition of 9 which is not a Wilf partition of 9 is [2,2,2,1,1,1].
Conjecture: a partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are all distinct, so y is counted under a(9). - Gus Wiseman, Aug 11 2025
Also the number of integer partitions y of n such that there is a pairwise disjoint way to choose a strict integer partition of each multiplicity (or run-length) of y. - Gus Wiseman, Aug 11 2025

Examples

			The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
		

Crossrefs

These include all Wilf partitions, counted by A098859, ranked by A130091.
These partitions are listed by A239454 in graded reverse-lex order.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351204, complement A351203.
The complement is counted by A351293, apparently ranked by A351295, conjugate A381433.
These partitions appear to be ranked by A351294, conjugate A381432.
The non-Wilf case is counted by A351592.
For normal multisets we appear to have A386580, complement A386581.
A000110 counts set partitions, ordered A000670.
A000569 = graphical partitions, complement A339617.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
A386583 counts separable partitions, sums A325534, ranks A335433.
A386584 counts inseparable partitions, sums A325535, ranks A335448.
A386585 counts separable type partitions, sums A336106, ranks A335127.
A386586 counts inseparable type partitions, sums A386638 or A025065, ranks A335126.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018, ranked by A044813.
- A329739 = compositions, for runs A351013, ranked by A351596.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
    Flatten[t](*A239454,sequence*)
    Map[Length[LS[#]] &, Range[25]](*A239455*)
    (* Peter J. C. Moses, Mar 18 2014 *)
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)

A386583 Triangle read by rows where T(n,k) is the number of length k integer partitions of n having a permutation without any adjacent equal parts (separable).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 3, 4, 1, 1, 0, 0, 0, 1, 3, 5, 3, 2, 0, 0, 0, 0, 1, 4, 6, 4, 3, 1, 0, 0, 0, 0, 1, 4, 8, 6, 5, 1, 1, 0, 0, 0, 0, 1, 5, 10, 8, 8, 3, 2, 0, 0, 0, 0, 0, 1, 5, 11, 12, 11, 5, 3, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2025

Keywords

Comments

A multiset is separable iff it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Separable partitions (A325534) are different from partitions of separable type (A386585).
Are the rows all unimodal?
Some rows are not unimodal: T(200, k=26..30) = 149371873744, 153304102463, 152360653274, 152412869411, 147228477998. - Alois P. Heinz, Aug 04 2025

Examples

			Row n = 9 counts the following partitions:
  (9)  (5,4)  (4,3,2)  (3,3,2,1)  (3,2,2,1,1)  (2,2,2,1,1,1)
       (6,3)  (4,4,1)  (4,2,2,1)  (3,3,1,1,1)
       (7,2)  (5,2,2)  (4,3,1,1)  (4,2,1,1,1)
       (8,1)  (5,3,1)  (5,2,1,1)
              (6,2,1)
              (7,1,1)
Triangle begins:
  1
  0  1
  0  1  0
  0  1  1  0
  0  1  1  1  0
  0  1  2  2  0  0
  0  1  2  2  1  0  0
  0  1  3  4  1  1  0  0
  0  1  3  5  3  2  0  0  0
  0  1  4  6  4  3  1  0  0  0
  0  1  4  8  6  5  1  1  0  0  0
  0  1  5 10  8  8  3  2  0  0  0  0
  0  1  5 11 12 11  5  3  1  0  0  0  0
  0  1  6 14 14 15  8  6  1  1  0  0  0  0
  0  1  6 16 19 20 11  9  3  2  0  0  0  0  0
  0  1  7 18 23 27 17 14  5  3  1  0  0  0  0  0
  0  1  7 21 29 34 23 20  9  6  1  1  0  0  0  0  0
  0  1  8 24 34 43 32 28 13 10  3  2  0  0  0  0  0  0
  0  1  8 26 42 53 42 38 20 15  5  3  1  0  0  0  0  0  0
  0  1  9 30 48 66 55 52 28 23  9  6  1  1  0  0  0  0  0  0
  0  1  9 33 58 80 70 68 41 33 14 10  3  2  0  0  0  0  0  0  0
  ...
		

Crossrefs

Separable case of A008284.
Row sums are A325534, ranked by A335433.
For inseparable instead separable we have A386584, sums A325535, ranks A335448.
For separable type instead of separable we have A386585, sums A336106, ranks A335127.
For inseparable type instead of separable we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A124762 gives inseparability of standard compositions, separability A333382.
A239455 counts Look-and-Say partitions, ranks A351294.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={};
    Table[Length[Select[IntegerPartitions[n,{k}],sepQ]],{n,0,15},{k,0,n}]

A386584 Triangle read by rows where T(n,k) is the number of length k>=0 integer partitions of n having no permutation without any adjacent equal parts (inseparable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 0, 0, 1, 0, 3, 2, 4, 2, 2, 1, 1, 0, 0, 0, 0, 3, 2, 4, 3, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2025

Keywords

Comments

A multiset is inseparable iff it has no anti-run permutations, where an anti-run is a sequence without any adjacent equal parts. Inseparable partitions (A325535) are different from partitions of inseparable type (A386586).

Examples

			Row n = 10 counts the following partitions:
  . . 55 . 7111 61111 511111 4111111 31111111 211111111 1111111111
           4222 22222 421111 3211111 22111111
           3331       331111
                      222211
Triangle begins:
  0
  0  0
  0  0  1
  0  0  0  1
  0  0  1  0  1
  0  0  0  0  1  1
  0  0  1  1  1  1  1
  0  0  0  0  2  1  1  1
  0  0  1  0  2  1  2  1  1
  0  0  0  1  2  2  2  2  1  1
  0  0  1  0  3  2  4  2  2  1  1
  0  0  0  0  3  2  4  3  3  2  1  1
  0  0  1  1  3  2  6  4  4  3  2  1  1
  0  0  0  0  4  3  6  5  6  4  3  2  1  1
  0  0  1  0  4  3  9  6  8  5  5  3  2  1  1
  0  0  0  1  4  3  9  7 10  8  6  5  3  2  1  1
  0  0  1  0  5  3 12  8 13  9 10  6  5  3  2  1  1
  0  0  0  0  5  4 12 10 16 12 12  9  7  5  3  2  1  1
  0  0  1  1  5  4 16 11 20 15 17 12 10  7  5  3  2  1  1
  0  0  0  0  6  4 16 13 24 18 21 16 14 10  7  5  3  2  1  1
  0  0  1  0  6  4 20 14 29 21 28 20 19 13 11  7  5  3  2  1  1
		

Crossrefs

Inseparable case of A008284 or A072233.
Row sums are A325535, ranked by A335448.
For separable instead of inseparable we have A386583, sums A325534, ranks A335433.
For separable type we have A386585, sums A336106, ranks A335127.
For inseparable type we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A124762 gives inseparability of standard compositions, separability A333382.
A336103 counts normal separable multisets, inseparable A336102.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={};
    Table[Length[Select[IntegerPartitions[n,{k}],insepQ]],{n,0,15},{k,0,n}]

Formula

T(n,k) = A072233(n,k) - A386583(n,k).

A386585 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k = 0..n parts such that any multiset whose multiplicities are the parts of y is separable.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 1, 5, 5, 5, 3, 2, 1, 1, 0, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2025

Keywords

Comments

We say that such partitions are of separable type.
A multiset is separable iff it has a permutation without any adjacent equal parts.

Examples

			Row n = 8 counts the following partitions:
  .  .  44  431  4211  41111  311111  2111111  11111111
            422  3311  32111  221111
            332  3221  22211
                 2222
with the following separable multisets:
  . . 11112222 11112223 11112234 11112345 11123456 11234567 12345678
               11112233 11122234 11122345 11223456
               11122233 11122334 11223345
                        11223344
Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  1  1  1
  0  0  1  2  1  1
  0  0  1  2  2  1  1
  0  0  1  3  3  2  1  1
  0  0  1  3  4  3  2  1  1
  0  0  1  5  5  5  3  2  1  1
  0  0  1  4  7  6  5  3  2  1  1
		

Crossrefs

This is the separable type case of A072233 or A008284.
Row sums are A336106, ranks A335127.
For separable instead of separable type we have A386583, inseparable A386584.
For inseparable instead of separable we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433.
A325535 counts inseparable multisets, ranks A335448.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={};
    mst[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}];
    Table[Length[Select[IntegerPartitions[n,{k}],sepQ[mst[#]]&]],{n,0,5},{k,0,n}]

Formula

a(n) = A072233(n) - A386586(n).

A386634 Number of inseparable type set partitions of {1..n}.

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 37, 50, 345, 502, 3851, 5897, 49854, 79249, 730745, 1195147, 11915997, 19929390, 213332101, 363275555, 4150104224, 7172334477, 87003759195, 152231458128, 1952292972199, 3451893361661, 46625594567852, 83183249675125, 1179506183956655, 2120758970878892
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2025

Keywords

Comments

A set partition is of inseparable type iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of inseparable type iff its greatest block size is at least 2 more than the sum of its other block sizes.
This is different from inseparable partitions (A325535) and partitions of inseparable type (A386638 or A025065).

Examples

			The a(2) = 1 through a(5) = 6 set partitions:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}    {{1,2,3,4,5}}
                      {{1},{2,3,4}}  {{1},{2,3,4,5}}
                      {{1,2,3},{4}}  {{1,2,3,4},{5}}
                      {{1,2,4},{3}}  {{1,2,3,5},{4}}
                      {{1,3,4},{2}}  {{1,2,4,5},{3}}
                                     {{1,3,4,5},{2}}
		

Crossrefs

For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
The complement is counted by A386633, sums of A386635.
Row sums of A386636.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],stnseps[#]=={}&]],{n,0,5}]

Extensions

a(12)-a(29) from Alois P. Heinz, Aug 10 2025

A386633 Number of separable type set partitions of {1..n}.

Original entry on oeis.org

1, 1, 1, 4, 10, 46, 166, 827, 3795, 20645, 112124, 672673, 4163743, 27565188, 190168577, 1381763398, 10468226150, 82844940414, 681863474058, 5832378929502, 51720008131148, 474862643822274, 4506628734688128, 44151853623626218, 445956917001833090, 4638586880336637692
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2025

Keywords

Comments

A set partition is of separable type iff the underlying set has a permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of separable type iff its greatest block size is at most one more than the sum of all its other block sizes.
This is different from separable partitions (A325534) and partitions of separable type (A336106).

Examples

			The a(1) = 1 through a(4) = 10 set partitions:
  {{1}}  {{1},{2}}  {{1},{2,3}}    {{1,2},{3,4}}
                    {{1,2},{3}}    {{1,3},{2,4}}
                    {{1,3},{2}}    {{1,4},{2,3}}
                    {{1},{2},{3}}  {{1},{2},{3,4}}
                                   {{1},{2,3},{4}}
                                   {{1,2},{3},{4}}
                                   {{1},{2,4},{3}}
                                   {{1,3},{2},{4}}
                                   {{1,4},{2},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

For separable partitions see A386583, sums A325534, ranks A335433.
For inseparable partitions see A386584, sums A325535, ranks A335448.
For separable type partitions see A386585, sums A336106, ranks A335127.
For inseparable type partitions see A386586, sums A386638 or A025065, ranks A335126.
The complement is counted by A386634, sums of A386636.
Row sums of A386635.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],stnseps[#]!={}&]],{n,0,5}]

Extensions

a(12)-a(25) from Alois P. Heinz, Aug 10 2025

A386635 Triangle read by rows where T(n,k) is the number of separable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of separable type iff the underlying set has a permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of separable type iff its greatest block size is at most one more than the sum of all its other blocks sizes.
This is different from separable partitions (A325534) and partitions of separable type (A336106).

Examples

			Row n = 4 counts the following set partitions:
  .  .  {{1,2},{3,4}}  {{1},{2},{3,4}}  {{1},{2},{3},{4}}
        {{1,3},{2,4}}  {{1},{2,3},{4}}
        {{1,4},{2,3}}  {{1},{2,4},{3}}
                       {{1,2},{3},{4}}
                       {{1,3},{2},{4}}
                       {{1,4},{2},{3}}
Triangle begins:
    1
    0    1
    0    0    1
    0    0    3    1
    0    0    3    6    1
    0    0   10   25   10    1
    0    0   10   75   65   15    1
    0    0   35  280  350  140   21    1
		

Crossrefs

Column k = 2 appears to be A128015.
For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386633.
The complement is counted by A386636, row sums A386634.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&];
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]!={}&]],{n,0,5},{k,0,n}]

A386636 Triangle read by rows where T(n,k) is the number of inseparable type set partitions of {1..n} into k blocks.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 21, 15, 0, 0, 0, 0, 1, 28, 21, 0, 0, 0, 0, 0, 1, 92, 196, 56, 0, 0, 0, 0, 0, 1, 129, 288, 84, 0, 0, 0, 0, 0, 0, 1, 385, 1875, 1380, 210, 0, 0, 0, 0, 0, 0, 1, 561, 2860, 2145, 330, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 10 2025

Keywords

Comments

A set partition is of inseparable type iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of inseparable type iff its greatest block size is at least 2 more than the sum of all its other block sizes.
This is different from inseparable partitions (A325535) and partitions of inseparable type (A386638 or A025065).

Examples

			Row n = 6 counts the following set partitions:
  .  {123456}  {1}{23456}  {1}{2}{3456}  .  .  .
               {12}{3456}  {1}{2345}{6}
               {13}{2456}  {1}{2346}{5}
               {14}{2356}  {1}{2356}{4}
               {15}{2346}  {1}{2456}{3}
               {16}{2345}  {1234}{5}{6}
               {1234}{56}  {1235}{4}{6}
               {1235}{46}  {1236}{4}{5}
               {1236}{45}  {1245}{3}{6}
               {1245}{36}  {1246}{3}{5}
               {1246}{35}  {1256}{3}{4}
               {1256}{34}  {1345}{2}{6}
               {1345}{26}  {1346}{2}{5}
               {1346}{25}  {1356}{2}{4}
               {1356}{24}  {1456}{2}{3}
               {1456}{23}
               {12345}{6}
               {12346}{5}
               {12356}{4}
               {12456}{3}
               {13456}{2}
Triangle begins:
    0
    0    0
    0    1    0
    0    1    0    0
    0    1    4    0    0
    0    1    5    0    0    0
    0    1   21   15    0    0    0
    0    1   28   21    0    0    0    0
    0    1   92  196   56    0    0    0    0
    0    1  129  288   84    0    0    0    0    0
    0    1  385 1875 1380  210    0    0    0    0    0
		

Crossrefs

For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
Row sums are A386634.
The complement is counted by A386635, row sums A386633.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]=={}&]],{n,0,5},{k,0,n}]

A386575 Number of distinct separable and pairwise disjoint sets of strict integer partitions, one of each exponent in the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2025

Keywords

Comments

A set partition is separable iff the underlying set has a permutation whose adjacent elements all belong to different blocks. Note that separability only depends on the sizes of the blocks.
Conjecture: a(n) > 0 iff the multiset of prime factors of n has a permutation with all distinct run lengths.

Examples

			The prime indices of 6144 are {1,1,1,1,1,1,1,1,1,1,1,2}, and we have the following a(6144) = 5 choices: {{1},{11}}, {{1},{5,6}}, {{1},{4,7}}, {{1},{3,8}}, {{1},{2,9}}. The other 2 disjoint families {{1},{2,4,5}} and {{1},{2,3,6}} are not separable.
The prime indices of 7776 are {1,1,1,1,1,2,2,2,2,2}, with separable disjoint families {{5},{2,3}}, {{5},{1,4}}, {{1,4},{2,3}}, so a(7776) = 3.
The prime indices of 15552 are {1,1,1,1,1,1,2,2,2,2,2}, with a(15552) = 5 choices: {{5},{6}}, {{5},{2,4}}, {{6},{2,3}}, {{6},{1,4}}, {{1,5},{2,3}}. The other disjoint family {{5},{1,2,3}} is not separable.
The a(n) families for n = 2, 96, 384, 1536, 3456, 20736:
  {{1}}  {{1},{5}}    {{1},{7}}    {{1},{9}}    {{3},{7}}      {{4},{8}}
         {{1},{2,3}}  {{1},{2,5}}  {{1},{2,7}}  {{3},{1,6}}    {{4},{1,7}}
                      {{1},{3,4}}  {{1},{3,6}}  {{3},{2,5}}    {{4},{2,6}}
                                   {{1},{4,5}}  {{7},{1,2}}    {{4},{3,5}}
                                                {{1,2},{3,4}}  {{8},{1,3}}
                                                               {{1,3},{2,6}}
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
For inseparable instead of separable we have A386582, see A386632.
This is the separable case of A386587 (ordered version A382525).
A000110 counts set partitions, ordered A000670.
A003242 and A335452 count separations, ranks A333489.
A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
A239455 counts Look-and-Say partitions, complement A351293.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts partitions of separable type, ranks A335127, sums of A386585.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    disjointFamilies[y_]:=Union[Sort/@Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seps[ptn_,fir_]:=If[Total[ptn]==1,{{fir}},Join@@Table[Prepend[#,fir]&/@seps[MapAt[#-1&,ptn,fir],nex],{nex,Select[DeleteCases[Range[Length[ptn]],fir],ptn[[#]]>0&]}]];
    seps[ptn_]:=If[Total[ptn]==0,{{}},Join@@(seps[ptn,#]&/@Range[Length[ptn]])];
    Table[Length[Select[disjointFamilies[prix[n]],seps[Length/@#]!={}&]],{n,100}]

A386638 Number of integer partitions of n of inseparable type.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2025

Keywords

Comments

A multiset is inseparable iff it has no permutation without adjacent equal parts. It is of inseparable type iff any multiset with those multiplicities (type) is inseparable. For example, {1,1,2} is separable but {1,1,1,2} is not; hence (2,1) is of separable type but (3,1) is not.
Also the number of integer partitions of n whose greatest part is at least two more than the sum of all the other parts.

Examples

			The a(2) = 1 through a(10) = 12 partitions (A=10):
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)     (A)
            (31)  (41)  (42)   (52)   (53)    (63)    (64)
                        (51)   (61)   (62)    (72)    (73)
                        (411)  (511)  (71)    (81)    (82)
                                      (521)   (621)   (91)
                                      (611)   (711)   (622)
                                      (5111)  (6111)  (631)
                                                      (721)
                                                      (811)
                                                      (6211)
                                                      (7111)
                                                      (61111)
		

Crossrefs

Reduplication of A000070 shifted right.
Same as A025065 shifted right twice.
The Heinz numbers of these partitions are A335126.
Row sums of A386586.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, inseparable case A386632.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A336106 counts separable type partitions, ranks A335127, sums of A386585.
A386633 counts separable type set partitions, row sums of A386635.
A386634 counts inseparable type set partitions, row sums of A386636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Max@@#>1+n&]],{n,0,15}]

Formula

For n>1, a(n) = A025065(n-2).
a(n) = A000041(n) - A336106(n).
Showing 1-10 of 16 results. Next