cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386613 a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k,n-k-1).

Original entry on oeis.org

0, 1, 15, 200, 2570, 32470, 406411, 5057440, 62692100, 775007135, 9561421830, 117780193480, 1449107627450, 17811990468400, 218768774024360, 2685209277718320, 32940971570389960, 403920568087927025, 4950915045235523125, 60663591616305306320, 743092566613017730980, 9100088494955802407060
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k, n-k-1));

Formula

G.f.: g^2 * (g-1)/(5-4*g)^2 where g=1+x*g^5.
G.f.: g/((1-g) * (1-5*g)^2) where g*(1-g)^4 = x.
a(n) = Sum_{k=0..n-1} binomial(5*k+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n+1,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k+1,k).