cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386624 a(n) = Sum_{d|n} sigma(d) * phi(d) * mu(n/d).

Original entry on oeis.org

1, 2, 7, 11, 23, 14, 47, 46, 70, 46, 119, 77, 167, 94, 161, 188, 287, 140, 359, 253, 329, 238, 527, 322, 596, 334, 642, 517, 839, 322, 959, 760, 833, 574, 1081, 770, 1367, 718, 1169, 1058, 1679, 658, 1847, 1309, 1610, 1054, 2207, 1316, 2346, 1192, 2009, 1837, 2807, 1284, 2737, 2162, 2513, 1678, 3479, 1771, 3719, 1918, 3290, 3056, 3841, 1666, 4487, 3157, 3689
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 27 2025

Keywords

Comments

Möbius transform of sigma(n) * phi(n) = A062354(n).

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A062354, A330523.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[1, d] MoebiusMu[n/d], {d, Divisors[n]}], {n, 100}]
    f[p_, e_] := p^(2*e) - p^(e-1) - If[e > 1, p^(2*e-2) - p^(e-2), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 27 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i, 2];  p^(2*e) - p^(e - 1) - if(e > 1, p^(2*e - 2) - p^(e - 2), 1));} \\ Amiram Eldar, Jul 27 2025

Formula

a(n) = Sum_{d|n} A062354(d) * mu(n/d).
From Amiram Eldar, Jul 27 2025: (Start)
Multiplicative with a(p) = p^2 - 2, and a(p^e) = p^(2*e) - p^(2*e-2) - p^(e-1) + p^(e-2) for e >= 2.
Dirichlet g.f.: (zeta(s-2) * zeta(s-1) / zeta(s)) * Product_{p prime} (1 - 1/p^(s-1) - 1/p^s + 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523*zeta(2)/(3*zeta(3)) = 0.24444595409976589792... . (End)