cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386627 Values of u in the (2,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to 1 + u^3 = v^2 + w^3, in positive integers, with v > 1; see Comments.

Original entry on oeis.org

4, 9, 12, 16, 25, 27, 29, 32, 35, 35, 36, 40, 41, 42, 42, 47, 48, 49, 51, 54, 56, 56, 64, 66, 74, 74, 74, 81, 84, 92, 98, 100, 103, 110, 119, 120, 121, 123, 136, 144, 146, 147, 150, 162, 168, 169, 174, 175, 179, 188, 191, 196, 198, 204, 225, 227, 232, 236
Offset: 1

Views

Author

Clark Kimberling, Jul 28 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m
Includes all squares > 1, as 1 + (i^2)^3 = v^2 + w^3 with w = 1, v = i^3. - Robert Israel, Jul 28 2025

Examples

			First 20 (2,3)-quartals (1,u,v,w):
  m    u    v   w
  1    4    8   1
  1    9   27   1
  1   12   27  10
  1   16   64   1
  1   25  125   1
  1   27  134  12
  1   29  123  21
  1   32  181   2
  1   35  126  30
  1   35  207   3
  1   36  216   1
  1   40  251  10
  1   41  253  17
  1   42  217  30
  1   42  269  12
  1   47  300  24
  1   48  267  34
  1   49  343   1
  1   51  242  42
  1   54  379  24
1^2 + 12^3 = 27^2 + 10^3 = 1729, so (1,12,27,10) is in the list.
		

Crossrefs

Programs

  • Maple
    f:= proc(u) local t;
      t:= 1+u^3;
      u$nops(select(w -> issqr(t-w^3), [$1 .. u-1]))
    end proc:
    map(f, [$1..1000]); # Robert Israel, Jul 28 2025
  • Mathematica
    quart[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs},
       For[u = 1, u <= max, u++, lhs = m^p + u^q;
        AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];];
       For[v = m + 1, v <= max, v++,
        For[w = 1, w <= max, w++, rhs = v^p + w^q;
          If[KeyExistsQ[lhsD, rhs],
           Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];];
       Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ",
         ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ",
         ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i,
         Length[ans]}]; ans];
    solns = quart[1, 2, 3, 6000]
    (* Peter J. C. Moses, Jun 21 2025 *)