cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386656 E.g.f.: Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 4, 98, 21901, 45203076, 864855654349, 151334120052647134, 240066304912259832915171, 3437872829353908000927273009224, 443629285010311848968435132228644809721, 515464807017361539745514781011221080738833641050
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [4, 3, 2, 1, 0, 1] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 3 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 4*x + 98*x^2/2! + 21901*x^3/3! + 45203076*x^4/4! + 864855654349*x^5/5! + 151334120052647134*x^6/6! + ...
where A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386657 (q=4), A386658 (q=5), A386648.

Programs

  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (3^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 3^(n^2) * exp( LambertW(x) * 3^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 3^(n^2) * (x/LambertW(x))^(3^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 3^(n*(n+1)) * x^n/n! * Sum_{k>=0} (3^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n*k) * (1 - (n-k)/3^k)^(n-k-1).