A386677 Triangle of numerators for rational convergents to Taylor series of 1/Gamma(x+1) (not in lowest terms).
1, 1, 0, 4, 1, -1, 36, 17, -21, 4, 576, 362, -501, 154, -15, 14400, 10394, -15325, 5810, -935, 56, 518400, 396384, -602390, 250785, -49385, 4791, -185, 25401600, 19569696, -29876966, 12619761, -2569805, 270459, -13349, 204, 1625702400, 1221167184, -1830986612, 726128116, -122438799, 5139736, 1144962
Offset: 0
Examples
The simplified triangle of coefficients (A386675) is 1; 1, 0; 1, 1/4, -1/4; 1, 17/36, -7/12, 1/9; 1, 181/288, -167/192, 77/288, -5/192; 1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800; 1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680; ... These coefficients are obtained using Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j!. Since Lag(n, x) is in general non-integral, we can write Sum_{j=0..n} (-1)^j * Stirling1(j, k) * numerator(Lag(j, 1))/(j! * denominator(Lag(j, 1))). Empirically we have LCM(j! * denominator(Lag(j, 1)), {j=0..n}) = (n!)^2. Rescaling so that A001044(n)=(n!)^2 is the denominator of the n-th row gives the following table of coefficients: 1/1; 1/1, 0/1; 4/4, 1/4, -1/4; 36/36, 17/36, -21/36, 4/36; 576/576, 362/576, -501/576, 154/576, -15/576; 14400/14400, 10394/14400, -15325/14400, 5810/14400, -935/14400, 56/14400; ... Thus for example 36/36 + 17/36x -21/36x^2 + 4/36x^3 is a degree 3 approximation to 1/Gamma(x+1). Therefore, T(3, 1) = 17, T(3, 2) = -21, etc.
Programs
-
Mathematica
T[n_, k_] := Numerator[(n!)^2*Sum[(-1)^j * StirlingS1[j, k] * LaguerreL[j, 1] / j!,{j, 0, n}]] maxN = 10; Table[T[n, k], {n, 0, maxN}, {k, 0, n}]
Formula
T(n, k) = numerator( (n!)^2 * Sum_{j=0..n} (-1)^j * Stirling1(j, k) * Lag(j, 1)/j! ) where Lag is the Laguerre L polynomials.
Comments