cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386679 Triangle of denominators for rational convergents to Taylor series of Gamma(x+1).

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 1, 36, 1296, 46656, 1, 288, 82944, 23887872, 6879707136, 1, 7200, 51840000, 373248000000, 2687385600000000, 19349176320000000000, 1, 5400, 58320000, 78732000000, 3401222400000000, 18366600960000000000, 198359290368000000000000, 1, 264600, 140026320000, 9262741068000000, 19607370292742400000000
Offset: 0

Views

Author

David Ulgenes, Aug 09 2025

Keywords

Comments

T(n, k) is the denominator of the k-th coefficient in a degree n polynomial approximation to Gamma(x+1) with rational coefficients.
That is, Gamma(x+1) ~ Sum_{j=0..n} A386678(n, j) * x^j / A386679(n, j) which is exact as lim_{n->oo}.

Examples

			Let A(n, k) = A386675(n, k)/A386676(n, k) be the triangle
  1;
  1, 0;
  1, 1/4, -1/4;
  1, 17/36, -7/12, 1/9;
  1, 181/288, -167/192, 77/288, -5/192;
  1, 5197/7200, -613/576, 581/1440, -187/2880, 7/1800;
  1, 4129/5400, -60239/51840, 5573/11520, -9877/103680, 1597/172800, -37/103680;
where each successive rows gives better rational approximations to 1/Gamma(x+1). Using the Cauchy product, one can obtain approximations to Gamma(x+1) with this table. For instance, T(3, 2) = -denominator(A(3, 1) * T(3, 1) + A(3, 2) * T(3, 0)) = -numerator(17/36 * (-17/36) + (- 7/12) * 1) = 1296. Doing this for each row yields the full table:
  1;
  1, 0;
  1, -1/4, 5/16;
  1, -17/36, 1045/1296, -35801/46656;
  1, -181/288, 104905/82944, -38432557/23887872, 15859708705/6879707136; ...
As an example, row 3 gives Gamma(x+1) ~ 1 - 17/36x + 1045/1296x^2 - 35801/46656x^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator@CoefficientList[Series[1/Sum[Sum[LaguerreL[i,1](-1)^i StirlingS1[i,k]/i!,{i,0,m}] x^k,{k,0,m}],{x,0,m}],x],{m,0,10}]

Formula

Let A(n, k) be the triangle of coefficients A386675(n, k)/A386676(n, k) (see example).
Then T(0, 0) = 1, and for n>=1, T(n, k) = -denominator(Sum_{j=1..k} A(n, j) * T(n, k-j)). This follows immediately from the Cauchy product applied to (1/f(x)) * f(x) = 1.
T(n, k) is also the denominator of the k-th coefficient in the Taylor series of 1/(Sum_{j=0..n} A(n, j) * x^j).
Equivalently, T(n, k) is the denominator of the k-th coefficient in the polynomial division 1/(Sum_{j=0..n} A(n, j) * x^j).