A386700 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(3*n,k).
1, 0, 6, 30, 186, 1140, 7116, 44856, 285066, 1823232, 11721726, 75683718, 490429224, 3187723344, 20774505408, 135699314640, 888177411018, 5823660624408, 38245666664994, 251528316024042, 1656338630258826, 10919849458481028, 72068276593960884, 476093333668519872
Offset: 0
Programs
-
Mathematica
Table[(-8/9)^n - Binomial[3*n, n]*(-1 + Hypergeometric2F1[1, -2*n, 1 + n, 1/3]), {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
PARI
a(n) = sum(k=0, n, (-3)^(n-k)*binomial(3*n, k));
Formula
a(n) = [x^n] 1/((1+2*x) * (1-x)^(2*n)).
a(n) = Sum_{k=0..n} (-2)^(n-k) * binomial(2*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 18*n*(2*n - 1)*(55*n^2 - 175*n + 138)*a(n) = (11605*n^4 - 49410*n^3 + 74243*n^2 - 46014*n + 9720)*a(n-1) + 24*(3*n - 5)*(3*n - 4)*(55*n^2 - 65*n + 18)*a(n-2).
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi*n) * 2^(2*n)). (End)
G.f.: g/((-2+3*g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(3*n,k) * binomial(3*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - 6*x*g^2*(-1+g)) where g = 1+x*g^3 is the g.f. of A001764. - Seiichi Manyama, Aug 17 2025