cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A385319 a(n) = Sum_{k=0..n} 2^k * binomial(2*n,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 43, 422, 4387, 47090, 515854, 5731052, 64330531, 727812026, 8285505178, 94798502804, 1089146648206, 12556967516852, 145201851788092, 1683334752235352, 19558532125813027, 227694254392461962, 2655343386035416162, 31014205667706302852, 362746369474101224602
Offset: 0

Views

Author

Seiichi Manyama, Jul 31 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^k*(-1)^(n-k)*Binomial[2*n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(2*n,k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+2*x)^2/(1-x) )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) / (1+2*x)^2 ). See A371391.
a(n) = Sum_{k=0..n} 3^k * (-1)^(n-k) * binomial(2*n,k).
a(n) ~ 2^(2*n-2) * 3^(n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Jul 31 2025
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+k-1,k). - Seiichi Manyama, Aug 01 2025

A385320 a(n) = Sum_{k=0..n} 2^k * binomial(3*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 8, 118, 1970, 34714, 630548, 11678284, 219240008, 4157096266, 79429466456, 1526869550638, 29495424821354, 572100064904872, 11134578632483600, 217341014671302976, 4253067310380772400, 83409477100625759050, 1638952453699219007072, 32259670449587082804466
Offset: 0

Views

Author

Seiichi Manyama, Jul 31 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^k*(-1)^(n-k)*Binomial[3*n, k], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(3*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+2*x)^3/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 / (1+2*x)^3 ). See A386722.
a(n) = Sum_{k=0..n} 3^k * (-1)^(n-k) * binomial(3*n,k).
a(n) ~ 3^(4*n + 3/2) / (7*sqrt(Pi*n)*2^(2*n)). - Vaclav Kotesovec, Jul 31 2025
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(2*n+k-1,k). - Seiichi Manyama, Aug 01 2025

A386723 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+2*x)^4 ).

Original entry on oeis.org

1, 11, 175, 3275, 67156, 1460237, 33073930, 771961835, 18437940220, 448483875596, 11071403236807, 276675755470349, 6985664542196380, 177932236341440270, 4566561255466298500, 117974930924420353835, 3065563791639454312492, 80069021664742889373380
Offset: 0

Views

Author

Seiichi Manyama, Jul 31 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+2*x)^4)/x)
    
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(4*(n+1), k)*binomial(4*n-k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^k * binomial(4*(n+1),k) * binomial(4*n-k+2,n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+2*x)^4 / (1-x)^3 )^(n+1).

A384366 a(n) = Sum_{k=0..n} 2^k * binomial(4*n+1,k) * binomial(4*n-k,n-k).

Original entry on oeis.org

1, 14, 298, 7058, 175594, 4494104, 117160486, 3094165004, 82503894826, 2216251440200, 59884814271208, 1625891941764962, 44318988449261926, 1212105802241702408, 33245450748860850532, 914105822029066709048, 25188189341369313927082, 695379304005363364395752
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2025

Keywords

Crossrefs

Cf. A386719.

Programs

  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(4*n+1, k)*binomial(4*n-k, n-k));

Formula

a(n) = [x^n] (1+2*x)^(4*n+1)/(1-x)^(3*n+1).
a(n) = [x^n] 1/((1-2*x) * (1-3*x)^(3*n+1)).
a(n) = Sum_{k=0..n} 3^k * (-1)^(n-k) * binomial(4*n+1,k).
a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(3*n+k,k).
Showing 1-4 of 4 results.