cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386731 a(n) = A385433(n) + A386730(n).

Original entry on oeis.org

2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 13, 13, 19, 17, 17, 23, 25, 29, 31, 37, 41, 45, 41, 43, 35, 43, 51, 47, 59, 65, 91, 99, 109, 121, 145, 175, 151, 155, 213, 291, 297, 259, 283, 349, 301, 415, 365, 369, 573, 683, 1103, 1017, 1195, 1347, 1537, 1619, 1717, 1751, 1957
Offset: 1

Views

Author

Ken Clements, Jul 31 2025

Keywords

Comments

These numbers are sum of the exponents of 2 and 3 for the averages of twin primes in A027856. An interesting aspect is that after the first 2 terms, all of these are odd numbers. For all of those, the sum cannot be even because then for m = 2^i * 3^j, m-1 or m+1 would be divisible by 5.

Examples

			a(1) = A385433(1) + A386730(1) = 2
a(2) = A385433(2) + A386730(2) = 2
a(3) = A385433(3) + A386730(3) = 3
a(4) = A385433(4) + A386730(4) = 3
a(5) = A385433(5) + A386730(5) = 5
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Total[IntegerExponent[Select[Sort[Flatten[Table[2^i*3^j, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {-1, 1}] &], #] & /@ {2, 3}]; seq[10^250] (* Amiram Eldar, Aug 01 2025 *)
  • Python
    from math import log10
    from gmpy2 import is_prime
    l2, l3 = log10(2), log10(3)
    upto_digits = 200
    sum_limit = 2 + int((upto_digits - l3)/l2)
    def TP_pi_2_upto_sum(limit): # Search all partitions up to the given exponent sum.
        unsorted_result = [(2, log10(4)), (1, log10(6))]
        for exponent_sum in range(3, limit+1, 2):
            for i in range(1, exponent_sum):
                j = exponent_sum - i
                log_N = i*l2 + j*l3
                if log_N <= upto_digits:
                    N = 2**i * 3**j
                    if is_prime(N-1) and is_prime(N+1):
                         unsorted_result.append((i+j, log_N))
        sorted_result = sorted(unsorted_result, key=lambda x: x[1])
        return sorted_result
    print([s for s, _ in TP_pi_2_upto_sum(sum_limit) ])