A386731 a(n) = A385433(n) + A386730(n).
2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 13, 13, 19, 17, 17, 23, 25, 29, 31, 37, 41, 45, 41, 43, 35, 43, 51, 47, 59, 65, 91, 99, 109, 121, 145, 175, 151, 155, 213, 291, 297, 259, 283, 349, 301, 415, 365, 369, 573, 683, 1103, 1017, 1195, 1347, 1537, 1619, 1717, 1751, 1957
Offset: 1
Keywords
Examples
a(1) = A385433(1) + A386730(1) = 2 a(2) = A385433(2) + A386730(2) = 2 a(3) = A385433(3) + A386730(3) = 3 a(4) = A385433(4) + A386730(4) = 3 a(5) = A385433(5) + A386730(5) = 5
Links
- Ken Clements, Table of n, a(n) for n = 1..82
Programs
-
Mathematica
seq[max_] := Total[IntegerExponent[Select[Sort[Flatten[Table[2^i*3^j, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {-1, 1}] &], #] & /@ {2, 3}]; seq[10^250] (* Amiram Eldar, Aug 01 2025 *)
-
Python
from math import log10 from gmpy2 import is_prime l2, l3 = log10(2), log10(3) upto_digits = 200 sum_limit = 2 + int((upto_digits - l3)/l2) def TP_pi_2_upto_sum(limit): # Search all partitions up to the given exponent sum. unsorted_result = [(2, log10(4)), (1, log10(6))] for exponent_sum in range(3, limit+1, 2): for i in range(1, exponent_sum): j = exponent_sum - i log_N = i*l2 + j*l3 if log_N <= upto_digits: N = 2**i * 3**j if is_prime(N-1) and is_prime(N+1): unsorted_result.append((i+j, log_N)) sorted_result = sorted(unsorted_result, key=lambda x: x[1]) return sorted_result print([s for s, _ in TP_pi_2_upto_sum(sum_limit) ])
Comments